Skip to main content
Log in

One-Dimensional Interaction of a Cylindrical Unloading Wave with a Moving Elastic–Plastic Boundary

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The one-dimensional dynamic problem of the theory of large elastic–plastic deformations is considered for the interaction of an unloading wave with an elastic–plastic boundary. It is shown that before the occurrence of the unloading wave, the increasing pressure gradient leads to quasistatic deformation of the elasti©viscoplastic material filling the round tube, which is retained in the tube due to friction on its wall, resulting in the formation of near-wall viscoplastic flow and an elastic core. The unloading wave is initiated at the moment of the onset of slippage of the material along the inner wall of the tube. Calculations were conducted using the ray method of constructing approximate solutions behind strong discontinuity surfaces, and ray expansions of the solutions behind the cylindrical surfaces of discontinuities were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kh. A. Rakhmatullin and G. S. Shapiro, “Propagation of Perturbations in a Nonlinearly Elastic and Inelastic Medium,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 2, 68–79 (1955).

    Google Scholar 

  2. G. I. Bykovtsev and L. D. Kretova, “On the Propagation of Shock Waves in Elastic–Plastic Media,” Prikl. Mat. Mekh. 36 (1), 106–116 (1972).

    MATH  Google Scholar 

  3. P. A. Bezglasnyi and N. D. Verveiko, “On the Propagation of Shock Waves in an Elastoviscoplastic Medium,” Izv. Akad. Nauk SSSR, Mekh. Tved. Tela, No. 5, 71–76 (1971).

    Google Scholar 

  4. A. A. Burenin, G. I. Bykovtsev, and V. A. Rychkov, “Velocity Discontinuity Surfaces in the Dynamics of Irreversibly Compressible Media,” in Problems of Continuum Mechanics (To the 60th Anniversary of Academician V. P. Myasnikov) (Inst. of Automation and Control Processes, FEB RAS, Vladivostok, 1996), pp. 116–127.

    Google Scholar 

  5. V. M. Sadovskii, Discontinuous Solutions in Problems of the Dynamics of Elastic–Plastic Media (Fizmatlit, Moscow, 1997) [in Russian].

    Google Scholar 

  6. V. N. Kukudzhanov and V. I. Kondaurov, “Numerical Solution of Non-One-Dimensional Problems of the Dynamics of a Solid Deformed Body,” in Problems of Dynamics of Elastic–Plastic Media (Mir, Moscow, 1975), pp. 38–84 [in Russian].

    Google Scholar 

  7. G. V. Ivanov, Yu. M. Volchkov, I. O. Bogul’skii, S. A. Anisimov, and V. D. Kurguzov, Numerical Solution of Dynamic Problems of Elastic–Plastic Deformation of Solid Bodies (Sib. Univ., Novosibirsk, 2002) [in Russian].

    Google Scholar 

  8. S. B. Afanas’ev and V. G. Bazhenov, “On the Numerical Solution of One-Dimensional Nonstationary Problems of Elastic–Plastic Deformation of Continuous Media by the Godunov Method,” Prikl. Probl. Prochn. Plast., No. 33, 21–29 (1986).

    Google Scholar 

  9. V. I. Kondaurov, I. B. Petrov, and A. S. Kholodov, “Numerical Modeling of the Process of Penetration of a Rigid Body of Revolution into an Elastoplastic Barrier,” Prikl. Mekh. Tech. Fiz. 25 (4), 132–139 (1984) [J. Appl. Mech. Tech. Phys. 25 (4), 625–632 (1984)].

    Google Scholar 

  10. I. D. Achenbach and D. R. Reddy, “Note of Wave Propagation in Lineary Viscoelastic Media,” Z. Angew. Math. Phys. 18, 141–144 (1967).

    Article  MATH  Google Scholar 

  11. L. A. Babicheva, G. I. Bykovtsev, and N. D. Verveiko, “Ray Method for Solving Dynamical Problems in Elastoviscoplastic Media,” Prikl. Mat. Mekh. 37 (1), 145–155 (1973).

    Google Scholar 

  12. J. Hadamard, Le¸cons sur la Propagation des Ondes et Les´equations de L’hydrodynamique (Herman, Paris, 1903).

    MATH  Google Scholar 

  13. T. Thomas, Plastic Flow and Fracture in Solids (Elsevier, 1961).

    MATH  Google Scholar 

  14. G. I. Bykovtsev and D. D. Ivlev, Theory of Plasticity (Dal’nauka, Vladivostok, 1998) [in Russian].

    Google Scholar 

  15. E. A. Gerasimenko and V. E. Ragozina, “Geometric and Kinematic Restrictions on Discontinuities of Functions on Moving Surfaces,” Dal’nevost. Mat. Zh. 5 (1), 100–109 (2004).

    Google Scholar 

  16. Yu. A. Rossikhin and M. V. Shitikova, “Ray Method for Solving Dynamic Problems Connected with Propagation of Wave Surfaces of Strong and Weak Discontinuities,” Appl. Mech. Rev. 48 (1), 1–39 (1995).

    Article  ADS  MATH  Google Scholar 

  17. A. A. Burenin and Yu. A. Rossikhin, “Ray Method for Solving One-Dimensional Problems of the Nonlinear Dynamic Theory of Elasticity with Flat Surfaces of Strong Discontinuities,” Applied Problems of Mechanics of Deformable Media (Dal’nauka, Vladivostok, 1991), pp. 129–137 [in Russian].

    Google Scholar 

  18. A. A. Burenin, Yu. A. Rossikhin, and M. V. Shitikova, “A Ray Method for Solving Boundary Value Problems Propagation of Finite Amplitude Shock Waves,” in Proc. of the Int. Symp. on Nonlinear Theory and Its Applications, Hawaii, December 5–10, 1993 (Inst. Electron., Inform. and Comm. Eng., Tokyo, 1993), Vol. 3, pp. 1085–1088.

    Google Scholar 

  19. A. A. Burenin and P. V. Zinov’ev, “On the Problem of Identifying Discontinuity Surfaces in Numerical Methods of Dynamics of Deformable Media,” in Problems of Mechanics: Dedicated to the 90th Anniversary of A. Yu. Ishlinskii (Fizmatlit, Moscow, 2003), pp. 146–155.

    Google Scholar 

  20. E. A. Gerasimenko and A. A. Zavertan, “Ray Expansions of Solutions around Fronts as Shock-Fitting Tool for Shock Loading Simulation,” Zh. Vychisl. Mat. Mat. Fiz. 49 (4), 722–733 (2009).

    MathSciNet  MATH  Google Scholar 

  21. L. V. Kovtanyuk and M. M. Rusanov, “On Collision of an Unloading Wave with an Advancing Elastic–Plastic Boundary in a Plane Heavy Layer,” Sib. Zh. Indust. Mat. 18 (3), 40–48 (2015).

    MATH  Google Scholar 

  22. A. A. Burenin and L. V. Kovtanyuk, Large Irreversible Strains and Elastic Aftereffect (Dal’nauka, Vladivostok, 2013) [in Russian].

    Google Scholar 

  23. A. I. Lur’e, Non-Linear Theory of Elasticity (Nauka, Moscow, 1980; North-Holland, Amsterdam, 1990).

    MATH  Google Scholar 

  24. V. A. Znamenskii and D. D. Ivlev, “On the Equations of a Viscoplastic Body for Piecewise Linear Potentials,” Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk, Mekh. Mashinostr., No. 6, 114–118 (1963).

    Google Scholar 

  25. A. A. Burenin, L. V. Kovtanyuk, and A. V. Lushpei, “The Transient Retardation of a Rectilinear Viscoplastic Flow when the Loading Stresses are Abruptly Removed,” Prikl. Mat. Mekh. 73 (3), 494–500 (2009).

    MATH  Google Scholar 

  26. A. A. Burenin, L. V. Kovtanyuk, and D. V. Kulaeva, “Interaction of a One-Dimensional Unloading Wave with an Eastic–Plastic Boundary in an Elastoviscoplastic Medium,” Prikl. Mekh. Tech. Fiz. 53 (1), 105–113 (2012) [J. Appl. Mech. Tech. Phys. 53 (1), 90–97 (2012)].

    MathSciNet  MATH  Google Scholar 

  27. G. G. Savenkov, “Dynamic Viscosity and Material Relaxation Time during Shock Loading,” Prikl. Mekh. Tekh. Fiz. 51 (2), 7–15 (2010) [J. Appl. Mech. Tech. Phys. 51 (2), 148–154 (2010)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Gerasimenko.

Additional information

Original Russian Text © E.A. Gerasimenko, L.V. Kovtanyuk, A.A. Burenin.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 2, pp. 149–159, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimenko, E.A., Kovtanyuk, L.V. & Burenin, A.A. One-Dimensional Interaction of a Cylindrical Unloading Wave with a Moving Elastic–Plastic Boundary. J Appl Mech Tech Phy 59, 316–325 (2018). https://doi.org/10.1134/S0021894418020153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418020153

Keywords

Navigation