Skip to main content
Log in

Natural Convection Heat Transfer in 2D and 3D Trapezoidal Enclosures Filled with Nanofluid

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The purpose of the present study is to investigate the heat transfer performance due to free convection of nanofluids with variable properties inside 2D and 3D channels with trapezoidal cross sections. The governing equations are solved numerically using the finite volume method and the SIMPLER algorithm. In this study, the effect of the nanoparticle volume fraction, Rayleigh number, side wall angles of the trapezoidal section, and axial slope of the 3D channel are examined. The presented results include the average Nusselt number, flow circulation streamlines, and isothermal contours. The heat transfer rate (i.e., Nusselt number) is seen to increase in both 2D and 3D channels with an increase in the Rayleigh number. In 2D trapezoidal enclosures, the Nusselt number decreases with an increase in the nanoparticle volume fraction from zero to 2% and increases if the nanoparticle volume fraction is greater than 2%. In 3D channels, an increase in the axial slope of the channel leads to an increase in the Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Karthik, S. Sahoo, S. K. Pabi, and S. Ghosh, “On the Phononic and Electronic Contribution to the Enhanced Thermal Conductivity of Water-Based Silver Nanofluids,” Int. J. Thermal Sci. 64, 53–61 (2013).

    Article  Google Scholar 

  2. K. V. Wong and O. De Leon, “Applications of Nanofluids: Current and Future,” Adv. Mech. Eng. 2, 519659 (2010).

    Article  Google Scholar 

  3. R. Saidur, K. Y. Leong, and H. A. Mohammad, “A Review on Applications and Challenges of Nanofluids,” Renewable Sustainable Energy Rev. 15 (3), 1646–1668 (2011).

    Article  Google Scholar 

  4. D. Yadav, C. Kim, J. Lee, and H. H. Cho, “Influence of Magnetic Field on the Onset of Nanofluid Convection Induced by Purely Internal Heating,” Comput. Fluids 121, 26–36 (2015).

    Article  MathSciNet  Google Scholar 

  5. D. Wen and Y. Ding, “Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions,” Int. J. Heat Mass Transfer 47 (24), 5181–5188 (2004).

    Article  Google Scholar 

  6. S. M. Aminossadati and B. Ghasemi, “Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure,” Europ. J. Mech. B. Fluids 28 (5), 630–640 (2009).

    Article  ADS  MATH  Google Scholar 

  7. S. M. Aminossadati and B. Ghasemi, “Enhanced Natural Convection in an Isosceles Triangular Enclosure Filled with a Nanofluid,” Comput. Math. Appl. 61 (7), 1739–1753 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Y. Jou and S. C. Tzeng, “Numerical Research of Nature Convective Heat Transfer Enhancement Filled with Nanofluids in Rectangular Enclosures,” Int. Comm. Heat Mass Transfer 33 (6), 727–736 (2006).

    Article  Google Scholar 

  9. K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” Int. J. Heat Mass Transfer 46 (19), 3639–3653 (2003).

    Article  MATH  Google Scholar 

  10. M. Saidi and G. Karimi, “Free Convection Cooling in Modified L-Shape Enclosures Using Copper–Water Nanofluid,” Energy 70, 251–271 (2014).

    Article  Google Scholar 

  11. M. Sheikholeslami, M. Gorji-Bandpay, and D. D. Ganji, “Magnetic Field Effects on Natural Convection around a Horizontal Circular Cylinder Inside a Square Enclosure Filled with Nanofluid,” Int. Comm. Heat Mass Transfer 39 (7), 978–986 (2012).

    Article  Google Scholar 

  12. S. M. Sebdani, M. Mahmoodi, and S. M. Hashemi, “Effect of Nanofluid Variable Properties on Mixed Convection in a Square Cavity,” Int. J. Thermal Sci. 52, 112–126 (2012).

    Article  Google Scholar 

  13. M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, et al., “Natural Convection of Nanofluids in an Enclosure between a Circular and a Sinusoidal Cylinder in the Presence of Magnetic Field,” Int. Comm. Heat Mass Transfer 39 (9), 1435–1443 (2012).

    Article  Google Scholar 

  14. R. Roslan, H. Saleh, and I. Hashim, “Effect of Rotating Cylinder on Heat Transfer in a Square Enclosure Filled with Nanofluids,” Int. J. Heat Mass Transfer 55 (23), 7247–7256 (2012).

    Article  Google Scholar 

  15. S. H. Hussain and A. K. Hussein, “Mixed Convection Heat Transfer in a Differentially Heated Square Enclosure with a Conductive Rotating Circular Cylinder at Different Vertical Locations,” Int. Comm. Heat Mass Transfer 38 (2), 263–274 (2011).

    Article  Google Scholar 

  16. N. Putra, W. Roetzel, and S. K. Das, “Natural Convection of Nano-Fluids,” Heat Mass Transfer 39 (8/9), 775–784 (2003).

    Article  ADS  MATH  Google Scholar 

  17. E. B. Ogüt, “Natural Convection of Water-Based Nanofluids in an Inclined Enclosure with a Heat Source,” Int. J. Thermal Sci. 48 (11), 2063–2073 (2009).

    Article  Google Scholar 

  18. Y. Hu, Y. He, C. Qi, et al., “Experimental and Numerical Study of Natural Convection in a Square Enclosure Filled with Nanofluid,” Int. J. Heat Mass Transfer 78, 380–392 (2014).

    Article  Google Scholar 

  19. Y. Hu, Y. He, S. Wang, et al., “Experimental and Numerical Investigation on Natural Convection Heat Transfer of TiO2–Water Nanofluids in a Square Enclosure,” J. Heat Transfer 136 (2), 022502 (2014).

    Article  Google Scholar 

  20. M. Corcione, M. Cianfrini, and A. Quintino, “Enhanced Natural Convection Heat Transfer of Nanofluids in Enclosures with Two Adjacent Walls Heated and the Two Opposite Walls Cooled,” Int. J. Heat Mass Transfer 88, 902–913 (2015).

    Article  Google Scholar 

  21. M. Bouhalleb and H. Abbassi, “Natural Convection of Nanofluids in Enclosures with Low Aspect Ratios,” Int. J. Hydrogen Energy 39 (27), 15275–15286 (2014).

    Article  Google Scholar 

  22. M. N. Hasan, K. Samiuzzaman, S. H. Haque, et al., “Mixed Convection Heat Transfer Inside a Square Cavity Filled with Cu–Water Nanofluid,” Procedia Eng. 105, 438–445 (2015).

    Article  Google Scholar 

  23. H. Saleh, R. Roslan, and I. Hashim, “Natural Convection Heat Transfer in a Nanofluid-Filled Trapezoidal Enclosure,” Int. J. Heat Mass Transfer 54 (1), 194–201 (2011).

    Article  MATH  Google Scholar 

  24. M. H. Esfe, A. A. A. Arani, W. M. Yan, et al., “Natural Convection in a Trapezoidal Enclosure Filled with Carbon Nanotube–EG–Water Nanofluid,” Int. J. Heat Mass Transfer 92, 76–82 (2016).

    Article  Google Scholar 

  25. M. A. Sheremet, T. Gro¸san, and I. Pop, “Steady-State Free Convection in Right-Angle Porous Trapezoidal Cavity Filled by a Nanofluid: Buongiorno’s Mathematical Model,” Europ. J. Mech. B. Fluids 53, 241–250 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. H. Hasib, M. S. Hossen, and S. Saha, “Effect of Tilt Angle on Pure Mixed Convection Flow in Trapezoidal Cavities Filled with Water–Al2O3 Nanofluid,” Procedia Eng. 105, 388–397 (2015).

    Article  Google Scholar 

  27. R. Nasrin and S. Parvin, “Investigation of Buoyancy-Driven Flow and Heat Transfer in a Trapezoidal Cavity Filled with Water–Cu Nanofluid,” Int. Comm. Heat Mass Transfer 39 (2), 270–274 (2012).

    Article  Google Scholar 

  28. A. H. Mahmoudi, I. Pop, M. Shahi, and F. Talebi, “MHD Natural Convection and Entropy Generation in a Trapezoidal Enclosure Using Cu–Water Nanofluid,” Comput. Fluids 72, 46–62 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Abu-Nada, “Effects of Variable Viscosity and Thermal Conductivity of Al2O3–Water Nanofluid on Heat Transfer Enhancement in Natural Convection,” Int. J. Heat Fluid Flow 30 (4), 679–690 (2009).

    Article  Google Scholar 

  30. S. P. Jang and S. U. Choi, “Effects of Various Parameters on Nanofluid Thermal Conductivity,” J. Heat Transfer 129 (5), 617–623 (2007).

    Article  Google Scholar 

  31. A. Arefmanesh, A. Aghaei, and H. Ehteram, “Mixed Convection Heat Transfer in a CuO–Water Filled Trapezoidal Enclosure, Effects of Various Constant and Variable Properties of the Nanofluid,” Appl. Math. Modelling 40 (2), 815–831 (2016).

    Article  MathSciNet  Google Scholar 

  32. E. Abu-Nada, Z. Masoud, H. F. Oztop, and A. Campo, “Effect of Nanofluid Variable Properties on Natural Convection in Enclosures,” Int. J. Thermal Sci. 49 (3), 479–491 (2010).

    Article  Google Scholar 

  33. C. T. Nguyen, F. Desgranges, G. Roy, et al., “Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hysteresis Phenomenon,” Int. J. Heat Fluid Flow 28 (6), 1492–1506 (2007).

    Article  Google Scholar 

  34. W. Yu and S. U. S. Choi, “The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model,” J. Nanoparticle Res. 5 (1/2), 167–171 (2003).

    Article  ADS  Google Scholar 

  35. Q. Z. Xue, “Model for Effective Thermal Conductivity of Nanofluids,” Phys. Lett. A 307 (5), 313–317 (2003).

    Article  ADS  Google Scholar 

  36. C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. Choi, “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement,” Appl. Phys. Lett. 87 (15), 3107 (2005).

    Article  Google Scholar 

  37. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere–Taylor and Francis Group, New York, 1980).

    MATH  Google Scholar 

  38. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamic: The Finite Volume Method (John Wiley, New York, 1995).

    Google Scholar 

  39. R. J. Krane and J. Jessee, “Some Detailed Field Measurements for a Natural Convection Flow in a Vertical Square Enclosure,” in Proc. 1st ASME–JSME Thermal Eng. Joint Conf., 1983, Vol. 1, pp. 323–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Akbarzadeh.

Additional information

Original Russian Text © P. Akbarzadeh, A.H. Fardi.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 2, pp. 121–133, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, P., Fardi, A.H. Natural Convection Heat Transfer in 2D and 3D Trapezoidal Enclosures Filled with Nanofluid. J Appl Mech Tech Phy 59, 292–302 (2018). https://doi.org/10.1134/S0021894418020128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418020128

Keywords

Navigation