Effective Molecular Dynamics Model of Ionic Solutions for Large-Scale Calculations



A model of ionic solutions is proposed which can be used to calculate aqueous salt solutions in different nanostructures. The interaction potential of the model includes the Lennard-Jones potential and angularly averaged dipole–dipole and ion–dipole interactions. Lennard-Jones potential parameters for different ions are obtained. Characteristics of aqueous solutions at different salt concentrations are calculated using the molecular dynamics method. It is shown that the calculated values of the hydration shells of ions parameters are in good agreement with the theoretical and experimental data at a salt concentration of 1 mol/kg. The computational scheme used in the calculations is described. It is shown that calculations using the proposed model require less computing resources compared with the standard models of ionic solutions.


ionic solution interaction potential molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The Missing Term in Effective Pair Potentials,” J. Chem. Phys. 91, 6269–6271 (1987).CrossRefGoogle Scholar
  2. 2.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., “Comparison of Simple Potential Functions for Simulating Fluid Water,” J. Chem. Phys. 79, 926–935 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    S. Izadi, R. Anandakrishnan, and A. V. Onufriev, “Building Water Models. A Different Approach,” J. Phys. Chem. Lett. 5, 3863–3871 (2014).CrossRefGoogle Scholar
  4. 4.
    J. L. F. Abascal and C. Vega, “A General Purpose Model for the Condensed Phases of Water: TIP4P/2005,” J. Chem. Phys. 123, 234–505 (2005).CrossRefGoogle Scholar
  5. 5.
    M. W. Mahoney and W. L. Jorgensen, “A Five-Site Model for Fluid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable Potential Functions,” J. Chem. Phys. 112, 8910–8922 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (Taylor and Francis, Bristol, 1988).CrossRefMATHGoogle Scholar
  7. 7.
    T. A. Darden, D. M. York, and L. G. Pedersen, “Particle Mesh Ewald: An N log (N) Method for Ewald Sums in Large Systems,” J. Chem. Phys. 98, 10089 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    U. Essmann, L. Perera, M. L. Berkowitz, et al., “A Smooth Particle Mesh Ewald Method,” J. Chem. Phys. 103, 8577–8593 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    V. E. Zalizniak, “An Efficient Water Model for Large Scale Molecular Dynamics Simulations,” J. Siberian Federal Univ.: Math. Phys. 8 (4), 487–496 (2015).MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. N. Israelachvili, Intermolecular and Surface Forces (Elsevier, Amsterdam, 2011), p.75.Google Scholar
  11. 11.
    C. J. Fennell and J. D. Gezelter, “Is the Ewald Summation Still Necessary? Pairwise Alternatives to the Accepted Standard for Long-Range Electrostatics,” J. Chem. Phys. 124, 234104 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Luo, W. Jiang, H. Yu, et al., “Simulation Study of Ion Pairing in Concentrated Aqueous Salt Solutions with a Polarizable Force Field,” Faraday Discuss. 160, 135–149 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide (CRC Press, Boca Raton, 1994).Google Scholar
  14. 14.
    K. J. Miller “Additivity Methods in Molecular Polarizability,” J. Amer. Chem. Soc. 112, 8533–8542 (1990).CrossRefGoogle Scholar
  15. 15.
    C. Pouchan and D. M. Bishop, “Static Dipole Polarizability of the Lithium Atom, Cation, and Anion,” Phys. Rev. A 29 1–5 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    G. D. Mahan, “Van der Waals Coefficient between Closed Shell Ions,” J. Chem. Phys. 76, 493–497 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    L. X. Dang, J. E. Rice, J. Caldwell, and P. A. Kollman, “Ion Solvation in Polarizable Water: Molecular Dynamics Simulations,” J. Amer. Chem. Soc. 113, 2481–2486 (1991).CrossRefGoogle Scholar
  18. 18.
    H. Coker, “Empirical Free-Ion Polarizabilities of the Alkali Metal, Alkaline Earth Metal, and Halide Ions,” J. Phys. Chem. 80, 2078–2084 (1976).CrossRefGoogle Scholar
  19. 19.
    O. A. Zolotov and V. E. Zalizniak, “Accurate Energy Conservation in Molecular Dynamics Simulation,” Nanosystems: Phys, Chem, Math. 4 (5), 657–669 (2013).Google Scholar
  20. 20.
    M. L. San-Román, M. Carrillo-Tripp, H. Saint-Martin, et al., “A Theoretical Study of the Hydration of Li+ by Monte Carlo Simulations with Refined ab Initio Based Model Potentials,” Theoret. Chem. Accounts 115, 177–189 (2006).CrossRefGoogle Scholar
  21. 21.
    R. Mancinelli, A. Botti, F. Bruni, et al., “Hydration of Sodium, Potassium, and Chloride Ions in Solution and the Concept of Structure Maker/Breaker,” J. Phys. Chem. B 111, 13570–13577 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Boisson, G. Stirnemann, D. Laage, and J. T. Hynes, “Water Reorientation Dynamics in the First Hydration Shells of F-and I-,” Phys. Chem. Chem. Phys. 13, 19895–19901 (2011).CrossRefGoogle Scholar
  23. 23.
    J. P. Brodholt, “Molecular Dynamics Simulations of Aqueous NaCl Solutions at High Pressures and Temperatures,” Chem. Geology. 151, 11–19 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    R. Hartkamp and B. Coasne, “Structure and Transport of Aqueous Electrolytes: From Simple Halides to Radionuclide Ions,” J. Chem. Phys. 141, 124508 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    J. A. Gates and R. H. Wood, “Densities of Aqueous Solutions of Sodium Chloride, Magnesium Chloride, Potassium Chloride, Sodium Bromide, Lithium Chloride, and Calcium Chloride from 0.05 to 5.0 mol kg-1 and 0.1013 to 40 MPa at 298.15 K,” J. Chem. Eng. Data 30 (1), 44–49 (1985).CrossRefGoogle Scholar
  26. 26.
    S. Reiser, M. Horsch, and H. Hasse, “Temperature Dependence of the Density of Aqueous Alkali Halide Salt Solutions by Experiment and Molecular Simulation,” J. Chem. Eng. Data 59, 3434–3448 (2014).CrossRefGoogle Scholar
  27. 27.
    R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics. 2. Nonequilibrium Statistical Mechanics (Springer, Berlin, 1991). (Springer Series in Solid-State Sciences, Vol. 31.)MATHGoogle Scholar
  28. 28.
    V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and V. V. Egorov, “The Simulation of Transport Processes Using the Method of Molecular Dynamics. Self-Diffusion Coefficient,” Teplofiz. Vysok. Temp. 46 (1), 35–44 (2008).Google Scholar
  29. 29.
    E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, New York, 1997).Google Scholar
  30. 30.
    J. E. Davis, A. Ozsoy, S. Patel, and M. Taufer, Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors, Bioinformatics and Computational Biology, Ed. by S. Rajasekaran (Springer-Verlag, Berlin–Heidelberg, 2009), pp. 176–186. (Lecture Notes in Bioinformatics, Vol. 5462.)Google Scholar
  31. 31.
    B. R. Brooks, C. L. Brooks III, A. D. Mackerell, et al., “CHARMM: The Biomolecular Simulation Program, J. Comput. Chem. 30, 1545–1615 (2009).CrossRefGoogle Scholar
  32. 32.
    Y. Wu, H. L. Tepper, and G. Voth, “Flexible Simple Point-Charge Water Model with Improved Fluid-State Properties,” J. Chem. Phys. 124, 024503 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. E. Zalizniak
    • 1
    • 2
  • O. A. Zolotov
    • 1
    • 2
  • I. I. Ryzhkov
    • 2
  1. 1.Institute of Mathematics and Fundamental InformaticsSiberian Federal UniversityKrasnoyarskRussia
  2. 2.Institute of Computational Modeling, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations