Skip to main content
Log in

Direct Numerical Simulation of a Supersonic Base Flow Behind a Circular Cylinder

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A supersonic flow in the near wake behind a cylinder is considered. Base pressure distributions behind a circular cylinder for various Mach numbers M are obtained and analyzed by means of direct numerical simulation based on high-order approximation algorithms. For M = 2.46, the results obtained in the present study are compared with available experimental and numerical data. Generation of turbulent kinetic energy is calculated for various Mach numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Garbaruk, M. Kh. Strelets, and M. L. Shur, Modeling of Turbulence in Complex Flow Computations: Tutorial (Izd. Politekh. Univ., St. Petersburg, 2012) [in Russian].

    Google Scholar 

  2. J. Sahu, C. J. Nietubicz, and J. L. Steger, “Navier–Stokes Computations of Projectile Base Flow with and without Mass Injection,” AIAA J. 23 (9), 1348–1355 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Rollstin, “Measurement of In-Flight Base Pressure on an Artillery-Fired Projectile,” J. Spacecraft Rockets 27 (1), 5–6 (1990).

    Article  ADS  Google Scholar 

  4. H. F. Fasel and R. D. Sandberg, “Simulation of Supersonic Base Flows: Numerical Investigations Using DNS, LES and URANS,” Report No. DAAD190210361 (Univ. of Arizona, Tucson, 2006).

    Book  Google Scholar 

  5. R. D. Sandberg and H. F. Fasel, “Direct Numerical Simulations of Transitional Supersonic Base Flows,” AIAA J. 44 (4), 848–858 (2006).

    Article  ADS  Google Scholar 

  6. D. R. Chapman, “An Analysis of Base Pressure at Supersonic Velocities and Comparison with Experiment,” Technical Note No. 2137 (Nat. Advisory Committee for Aeronautics, Washington, 1950).

    Google Scholar 

  7. F. Simon, S. Deck, P. Guillen, and P. Sagaut, “Reynolds-Averaged Navier–Stokes / Large-Eddy Simulations of Supersonic Base Flow,” AIAA J. 44 (11), 2578–2590 (2006).

    Article  ADS  Google Scholar 

  8. J. R. Forsythe, K. A. Hoffmann, and K. D. Squires, “Detached-Eddy Simulation with Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow,” J. Fluids Eng. 124, 911–923 (2002).

    Article  Google Scholar 

  9. J. L. Herrin and J. C. Dutton, “Supersonic Base Flow Experiments in the NearWake of a Cylindrical Afterbody,” AIAA J. 32 (1), 77–83 (1994).

    Article  ADS  Google Scholar 

  10. R. D. Sandberg, “Stability Analysis of Axisymmetric Supersonic Wakes Using Various Basic States,” J. Phys.: Conf. Ser. 318, 032017 (2011).

    Google Scholar 

  11. R. D. Sanderberg and H. F. Fasel, “Numerical Investigation of Transitional Supersonic Axisymmetric Wakes,” J. Fluid Mech. 563, 1–41 (2006).

    Article  ADS  MATH  Google Scholar 

  12. L. V. Dorodnitsyn, “Non-Reflecting Boundary Conditions and Numerical Simulation of Flow Problems,” Zh. Vychisl. Mat. Mat. Fiz. 51 (1), 152–169 (2011).

    MathSciNet  MATH  Google Scholar 

  13. S. Gottlieb and C.-W. Shu, “Total Variation Diminishing Runge–Kutta Schemes,” Math. Comput. 67 (221), 73–85 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. M. Molchanov, Mathematical Modeling of Problems of Gas Dynamics and Heat and Mass Transfer (Moscow Aviation Institute, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lipanov.

Additional information

Original Russian Text © A.M. Lipanov, S.A. Karskanov, A.I. Karpov.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 1, pp. 19–27, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipanov, A.M., Karskanov, S.A. & Karpov, A.I. Direct Numerical Simulation of a Supersonic Base Flow Behind a Circular Cylinder. J Appl Mech Tech Phy 59, 14–21 (2018). https://doi.org/10.1134/S0021894418010030

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418010030

Keywords

Navigation