Advertisement

Effect of Small Bluntness on Formation of Görtler Vortices in a Supersonic Compression Corner Flow

  • P. V. Chuvakhov
  • V. Ya. Borovoy
  • I. V. Egorov
  • V. N. Radchenko
  • H. Olivier
  • A. Roghelia
Article

Abstract

The influence of small cylindrical bluntness of the leading edge of a flat plate on formation of spatial structures in a nominally two-dimensional supersonic compression corner flow at the Mach number M∞ ≈ 8 and a laminar state of the undisturbed boundary layer is studied by the method of temperature-sensitive paints. Streamwise vortices are found in the region of reattachment of the separated flow in a wide range of Reynolds numbers (0.15 · 106–2.55 · 106) for various angles of flow deflection and plate lengths. It is demonstrated that the existence of these vortices induces spanwise oscillations of the heat transfer coefficient; the amplitude of these oscillations may reach 30%. The maximum deviations of the Stanton number reaching 80% are observed in the case with significant roughness of the leading edge of the flat plate. Both the maximum Stanton numbers in the reattachment region and the amplitude of spanwise oscillations of the Stanton number induced by streamwise vortices are found to decrease significantly in the case of small bluntness of the leading edge. Solutions of three-dimensional Navier–Stokes equations are obtained for some test conditions. The computed results are in good agreement with experimental data, which points to a significant stabilizing effect of small bluntness on the intensity of streamwise vortices.

Keywords

small bluntness high-entropy layer boundary layer compression corner Görtler vortices supersonic flow flow separation flow reattachment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. K. H. Holger Babinsky, Shock Wave-Boundary-Layer Interactions: Cambridge Aerospace (Cambridge University Press, Cambridge, 2011).CrossRefzbMATHGoogle Scholar
  2. 2.
    P. K. Chang, “Characteristics of Separated Flows,” in Separation of Flow, Ed. by P. K. Chang (Pergamon Press, Oxford, London–Edinburgh, 1970), Chapter 7, pp. 272–335.CrossRefGoogle Scholar
  3. 3.
    E. H. Hirschel, Basics of Aerothermodynamics (Springer, 2015).CrossRefGoogle Scholar
  4. 4.
    H. Schlichting, Boundary Layer Theory (McGraw, New York, 1960).zbMATHGoogle Scholar
  5. 5.
    R. E. Spall and M. R. Malik, “Goertler Vortices in Supersonic and Hypersonic Boundary Layers,” Phys. Fluids, A: Fluid Dyn. 1 (11), 1822–1835 (1989).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    J. J. Ginoux, “On Some Properties of Reattaching Laminar and Transitional High Speed Flows,” Tech. Note K´arm´an Inst. for Fluid Dynamics, No. 53 (Rhode-Saint-Genése, 1969).Google Scholar
  7. 7.
    V. N. Brazhko, “Periodic Structure of the Flow and Heat Transfer in the Region of Supersonic Flow Reattachment,” Uch. Zap. TsAGI 10 (2), 113–118 (1979).Google Scholar
  8. 8.
    D. A. de la Chevalerie, A. Fonteneau, L. de Luca, and G. Cardone, “Görtler-Type Vortices in Hypersonic Flows: The Ramp Problem,” Exp. Thermal Fluid Sci. 15 (2), 69–81 (1997).CrossRefGoogle Scholar
  9. 9.
    J. J. Ginoux, “Streamwise Vortices in Reattaching High-Speed Flows—A Suggested Approach,” AIAA J. 9 (4), 759–760 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    G. F. Glotov and E. K. Moroz, “Streamwise Vortices in Supersonic Flows with Separation Regions,” Uch. Zap. TsAGI 8 (4), 44–53 (1977).Google Scholar
  11. 11.
    Y. Ishiguro, H. Nagai, K. Asai, and K. Nakakita, “Visualization of Hypersonic Compression Corner Flows Using Temperature-and Pressure-Sensitive Paints,” AIAA Paper No. 2007-118 (2007).CrossRefGoogle Scholar
  12. 12.
    T. Kuriki, H. Sakaue, O. Imamura, and K. Suzuki, “Temperature-Cancelled Anodized-Aluminum Pressure Sensitive Paint for Hypersonic Compression Corner Flows,” AIAA Paper No. 2010-673 (2010).CrossRefGoogle Scholar
  13. 13.
    L. de Luca, G. Cardone, and G. G. M. Carlomagno, “Goertler Vortices in Hypersonic Flow Detected by IR Thermography,” in Proc. of the Int. Congr. Instrument. in Aerospace Simulat. Facilities, Saint Louis, France, September 20–23, 1993 (IEEE, 1993).Google Scholar
  14. 14.
    L. de Luca, G. Cardone, D. A. de la Chevalerie, and A. Fonteneau, “Viscous Interaction Phenomena in Hypersonic Wedge Flow,” AIAA J. 33 (12), 2293–2298 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    G. Simeonides and W. Haase, “Experimental and Computational Investigations of Hypersonic Flow about Compression Ramps,” J. Fluid Mech. 283 (1), 17–42 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    L. de Luca, G. Cardone, D. A. de la Chevalerie, and A. Fonteneau, “Goertler Instability of a Hypersonic Boundary Layer,” Exp. Fluids 16 (1), 10–16 (1993).CrossRefGoogle Scholar
  17. 17.
    V. I. Zapryagaev and I. N. Kavun, “Mechanism of Formation of Streamwise Vortices behind the Reattachment Line of a Supersonic Separated Flow in the Compression Corner,” Uch. Zap. TsAGI 47 (3), 27–37 (2016).Google Scholar
  18. 18.
    C. Whang and X. Zhong, “Secondary Goertler Instability in Hypersonic Boundary Layers,” AIAA Paper No. 2001-0273 (2001).CrossRefGoogle Scholar
  19. 19.
    S. Navarro-Martinez and O. R. Tutty, “Numerical Simulation of Görtler Vortices in Hypersonic Compression Ramps,” Comput. Fluids 34 (2), 225–247 (2005).CrossRefzbMATHGoogle Scholar
  20. 20.
    G. G. Chernyi, Introduction to Hypersonic Flow (Academic Press, New York, London, 1961).Google Scholar
  21. 21.
    D. Ault and D. Van Wie, “Comparison of Experimental Results and Computational Analysis for the External Flowfield of a Scramjet Inlet at Mach 10 and 13,” in Proc. of the 4th Symp. Multidisciplinary Analysis and Optimization, Cleveland (USA), September 21–23, 1992; https://doi.org/10.2514/MMAO92.Google Scholar
  22. 22.
    Z. Hong-jun and S. Qing, “Experimental Investigation of Leading Edge Bluntness Effects on Hypersonic Two-Dimensional Inlet,” Procedia Eng. 99, 1582–1590 (2015).CrossRefGoogle Scholar
  23. 23.
    V. Ya. Borovoy, “Effect of Bluntness of Gas-Compressing Ramps on Starting of a Model Inlet,” Uch. Zap. TsAGI 47 (3), 56–70 (2016).Google Scholar
  24. 24.
    K. Heffner, A. Chpoun, and J. Lengrand, “Experimental Study of Transitional Axisymmetric Shock-Boundary Layer Interactions at Mach 5,” AIAA Paper No. 93-3131 (1993).Google Scholar
  25. 25.
    S. G. Mallinson, S. L. Gai, and N. R. Mudford, “Leading-Edge Bluntness Effects in High Enthalpy, Hypersonic Compression Corner Flow,” AIAA J. 34 (11), 2284–2290 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    H. K. Cheng, J. Gordon Hall, T. C. Golian, amd A. Hertzberg, “Boundary-Layer Displacement and Leading-Edge Bluntness Effects in High-Temperature Hypersonic Flow¡” J. Aerospace Sci. 28 (5), 353–381 (1961).CrossRefzbMATHGoogle Scholar
  27. 27.
    M. S. Holden, “Boundary-Layer Displacement and Leading-Edge Bluntness Effects on Attached and Separated Laminar Boundary Layers in a Compression Corner. 2. Experimental Study,” AIAA J. 9 (1), 84–93 (1971).ADSCrossRefGoogle Scholar
  28. 28.
    J. Bibin and K. Vinayak, “Effect of Leading Edge Bluntness on the Interaction of Ramp Induced Shock Wave with Laminar Boundary Layer at Hypersonic Speed,” Comput. Fluids 96, 177–190 (2014).MathSciNetCrossRefGoogle Scholar
  29. 29.
    V. Y. Borovoy, A. S. Skuratov, and I. V. Struminskaya, “On the Existence of a Threshold Value of the Plate Bluntness in the Interference of an Oblique Shock with Boundary and Entropy Layers,” Fluid Dyn. 43 (3), 369–379 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    V. E. Mosharov and V. N. Radchenko, “Measurements of Heat Flux Fields in Short-Duration Wind Tunnels by Temperature-Sensitive Paints,” Uch. Zap. TsAGI 38 (1/2), 94–101 (2007).Google Scholar
  31. 31.
    W. Saric, “Görtler Vortices,” Annual Rev. Fluid Mech. 26 (1), 379–409 (1994).ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    V. N. Zhigulev and A. M. Tumin, Emergence of Turbulence (Nauka, Moscow, 1987) [in Russian].zbMATHGoogle Scholar
  33. 33.
    I. V. Egorov, A. V. Fedorov, and V. G. Soudakov, “Direct Numerical Simulation of Disturbances Generated by Periodic Suction–Blowing in a Hypersonic Boundary Layer,” Theoret. Comput. Fluid Dyn. 20 (1), 41–54 (2006).ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    H. Ludeke and P. Lrogmann, “Numerical and Experimental Investigations of Laminar/Turbulent Boundary Layer Transition,” in Proc. of the Europ. Congr. on Computational Methods in Applied Sciences and Engineering, Barcelona, September 11–14, 2000.Google Scholar
  35. 35.
    V. V. Shvedchenko, “3D Secondary Separation at Supersonic Flow over the Compression Ramp,” TsAGI Sci. J. 41 (6), 631–650 (2010). 989CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. V. Chuvakhov
    • 1
    • 2
  • V. Ya. Borovoy
    • 1
  • I. V. Egorov
    • 1
    • 2
  • V. N. Radchenko
    • 1
  • H. Olivier
    • 3
  • A. Roghelia
    • 3
  1. 1.Central Aerohydrodynamic InstituteZhukovskiiRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  3. 3.Rheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations