Biomechanical Simulation to Compare the Blood Hemodynamics and Cerebral Aneurysm Rupture Risk in Patients with Different Aneurysm Necks

  • K. Hajirayat
  • S. Gholampour
  • I. Sharifi
  • D. Bizari


In this study, one normal subject and two patients suffering from a cerebral aneurysm with circular and elliptical necks are analyzed by using the fluid-structure interaction (FSI) method. Although the blood hemodynamics parameters increase after the occurrence of the disease, the largest increase is in the wall shear stress (by a factor of 4.1–6.5) as compared to the normal subject. The increase in these parameters for patients with a circular neck is more pronounced than that with an elliptical neck. The blood flow becomes slightly more turbulent after the occurrence of the cerebral aneurysm, though it still remains in the range of the laminar flow and the pulsatility of the blood flow in patients is 28–45% greater than that of the normal subject. Finally, the results show that the risk of vessel rupture in the cerebral aneurysm with a circular neck is 40.8% higher than that in the case of the cerebral aneurysm with an elliptical neck.


cerebral aneurysm aneurysm rupture fluid-structure interaction Reynolds number Womersley number wall shear stress blood hemodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Omodaka, H. Endo, K. Niizuma, et al., “Quantitative Assessment of Circumferential Enhancement Along the Wall of Cerebral Aneurysms Using MR Imaging.” Amer. J. Neuroradiol. 37 (7), 1262–1266 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Sanchez, O. Ecker, D. Ambard, et al., “Intracranial Aneurysmal Pulsatility as a New Individual Criterion for Rupture Risk Evaluation: Biomechanical and Numeric Approach (IRRAS project),” Amer. J. Neuroradiol. 35 (9), 1765–1771 (2014).CrossRefGoogle Scholar
  3. 3.
    D. A. Steinman, J. S. Milner, C. J. Norley, et al., “Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm,” Amer. J. Neuroradiol. 24 (4), 559–566 (2003).Google Scholar
  4. 4.
    M. Shojima, M. Oshima, K. Takagi, et al., “Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms,” Stroke 35 (11), 2500–2505 (2004).CrossRefGoogle Scholar
  5. 5.
    A. Valencia, A. Zarate, M. Galvez, et al., “Non-Newtonian Blood Flow Dynamics in a Right Internal Carotid Artery with a Saccular Aneurysm,” Int. J. Numer. Methods Fluids 50 (6), 751–764 (2006).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    K. Hajirayat, S. Gholampour, A. S. Seddighi, et al., “Evaluation of Blood Hemodynamics in Patients with Cerebral Aneurysm,” Int. Clinic. Neurosci. J. 3 (1), 44–50 (2016).Google Scholar
  7. 7.
    A. Valencia, D. Ledermann, R. Rivera, et al., “Blood Flow Dynamics and Fluid-Structure Interaction in Patient-Specific Bifurcating Cerebral Aneurysms,” Int. J. Numer. Methods Fluids 58, 1081–1100 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Baek, M. V. Jayaraman, P. D. Richardson, et al., “Flow Instability and Wall Shear Stress Variation in Intracranial Aneurysms,” J. Roy. Soc. Interface 7 (47), 967–988 (2009).CrossRefGoogle Scholar
  9. 9.
    W. Brinjikji, H. J. Cloft, and D. F. Kallmes, “Difficult Aneurysms for Endovascular Treatment: Overwide or Undertall?” Amer. J. Neuroradiol. 30 (8), 1513–1517 (2009).CrossRefGoogle Scholar
  10. 10.
    E. Yu. Meshcheryakova, “New Steady and Self-Similar Solutions of the Euler Equations,” Prikl. Mekh. Tekh. Fiz. 44 (4), 3–9 (2003) [J. Appl. Mech. Tech. Phys. 44 (4), 455–460 (2003)].MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. V. Meleshko and V. V. Pukhnachev, “One Class of Partially Invariant Solutions of the Navier–Stokes Equations,” Prikl. Mekh. Tekh. Fiz. 40 (2), 24–33 (1999) [J. Appl. Mech. Tech. Phys. 40 (2), 208–216 (1999)].zbMATHGoogle Scholar
  12. 12.
    S. Gholampour, N. Fatouraee, A. S. Seddighi, and A. Seddighi, “Evaluating the Effect of Hydrocephalus Cause on the Manner of Changes in the Effective Parameters and Clinical Symptoms of the Disease,” J. Clinic. Neurosci 35, 50–55 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Li, K. Lin, and D. Shahmirzadi, “FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness,” Biomed. Eng. Comput. Biology 7, 25–36 (2016).CrossRefGoogle Scholar
  14. 14.
    S. S. Shishir, M. A. K. Miah, A. K. M. S. Islam, and A. B. M. T. Hasan, “Blood Flow Dynamics in Cerebral Aneurysm—A CFD Simulation,” Proc. Eng. 105, 919–927 (2015).CrossRefGoogle Scholar
  15. 15.
    R. Torii, M. Oshima, T. Kobayashi, et al., “Fluid–Structure Interaction Modeling of a Patient-Specific Cerebral Aneurysm: Influence of Structural Modeling,” Comput. Mech. 43 (1), 151–159 (2008).CrossRefzbMATHGoogle Scholar
  16. 16.
    S. Gholampour, N. Fatouraee, A. S. Seddighi, et al., “A Hydrodynamical Study to Propose a Numerical Index for Evaluating the CSF Conditions in Cerebralventricular System,” Int. Clinic. Neurosci. J. 1 (1), 1–9 (2014).Google Scholar
  17. 17.
    S. Gholampour, N. Fatouraee, A. S. Seddighi, et al., “Numerical Simulation of Cerebrospinal Fluid Hydrodynamics in the Healing Process of Hydrocephalus Patients,” Prikl. Mekh. Tekh. Fiz. 58 (3), 12–18 (2017) [J. Appl. Mech. Tech. Phys. 58 (3), 386–391 (2017)].Google Scholar
  18. 18.
    M. Xenos, S. H. Rambhia, Y. Alemu, et al., “Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling,” Ann. Biomed. Eng. 38 (11), 3323–3337 (2010).CrossRefGoogle Scholar
  19. 19.
    J. P. V. Geest, D. H. J. Wang, S. R. Wisniewski, et al., “Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms,” Ann. Biomed. Eng. 34 (7), 1098–1106 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. Hajirayat
    • 1
    • 2
  • S. Gholampour
    • 2
  • I. Sharifi
    • 1
  • D. Bizari
    • 1
  1. 1.Biomedical Research CenterBaqiyatallah University of Medical ScienceTehranIran
  2. 2.Department of Biomedical Engineering, North Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations