Skip to main content
Log in

Numerical simulation of titanium dissolution in the aluminum melt and synthesis of an intermetallic compound

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Titanium dissolution in the aluminum melt and synthesis of an intermetallic compound at constant temperature and pressure are numerically simulated by the molecular dynamics method. Owing to titanium dissolution, the TiAl3 intermetallic compound is formed near the interface between the titanium crystal and aluminum melt. Based on the theory of weak solutions, a mathematical model of titanium dissolution in the aluminum melt is constructed. Dependences of the diffusion coefficient, equilibrium concentration of titanium, and dissolution rate on temperature are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xu, Y. L. Cui, Y. L. Hao, and R. Yang, “Growth of Intermetallic Layer in Multi-Laminated Ti/Al Diffusion Couples,” Material Sci. Engng. A 435/436, 638–647 (2006).

    Article  Google Scholar 

  2. I. A. Bataev, A. A. Bataev, V. I. Mali, et al., “Nucleation and Growth of Titanium Aluminide in an Explosion— Welded Laminate Composite,” Phys. Metals Metallography 113 (10), 947–956 (2012).

    Article  ADS  Google Scholar 

  3. S. P. Kiselev and N. S. Ryashin, “Ti–Al Intermetallic Compounds Synthesis in Coatings Deposited by Cold Spraying,” AIP Conf. Proc. 1770, 030093-1–030093-4 (2016).

    Google Scholar 

  4. S. P. Kiselev, N. S. Ryashin, and A. A. Polukhin, “Diffusion Processes in Annealing Aluminum Coatings Deposited by Cold Gas-Dynamic Spraying on Titanium,” in Abstracts 3rd Intern. Conf. “Nonisothermal Phenomena and Processes: from the Thermal Explosion Theory to Structural Macrokinetics,” Chernogolovka, November 28–29, 2016 (METR i K, Chernogolovka, 2016), pp. 105–106.

    Google Scholar 

  5. J. Krai, M. Ferdinandy, and P. Diko, “Formation of TiAl3 Layer on Titanium Alloys,” Material Sci. Engng. A 140, 749–785 (1991).

    Google Scholar 

  6. R. Khoshhal, M. Soltaniech, and M. Mirjalili, “Formation and Growth of Titanium Aluminide Layer at the Surface of Titanium Sheets Immersed in Molten Aluminum,” Iranian J. Materials Sci. Engng. 7 (1), 24–31 (2010).

    Google Scholar 

  7. M. Sujata, S. Bhargava, and S. Sangal, “Microstructurial Features of TiAl3 Base Compounds Formed by Reaction Synthesis,” Materials Design 32 (1), 207–216 (2011).

    Article  Google Scholar 

  8. L. M. Gurevich, “Mechanisms of Structure Formation due to Titanium Interaction with the Aluminum Melt,” Izv. Volgogr. Gos. Univ., Ser. Probl. Mater. Svarki Prochnosti v Mashinostr. 7 (6), 6–13 (2013).

    Google Scholar 

  9. K. B. Koshelev, “Investigation of the Structure Formation and Self-Heating Processes in a Binary Ti–Al Powder Mixture in the Regime of a Static Thermal Explosion on the Basis of the Diagram of State,” Izv. Tomsk. Politekh. Univ. 312 (2), 44–47 (2008).

    Google Scholar 

  10. S. P. Kiselev, “Numerical Simulation of Synthesis Kinetics of the Ti–Al Intermetallic Compound by the Molecular Dynamics Method,” Fiz. Mezomekh. 19 (3), 47–57 (2016).

    Google Scholar 

  11. S. P. Kiselev, “Simulation of Crystallization of the Ti–Al Nanoparticle by the Molecular Dynamics Method,” Dokl. Akad. Nauk 466 (4), 406–408 (2016).

    Google Scholar 

  12. R. R. Zope and Y. Mishin, “Interatomic Potentials for Atomistic Simulations of the Ti–Al System,” Phys. Rev. B 68, 024102-1–024102-14 (2003).

    Google Scholar 

  13. S. L. Nose, “Unified Formulation of the Constant Temperature Molecular Dynamics Methods,” J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  14. S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117, 1–19 (1995).

    Article  ADS  MATH  Google Scholar 

  15. S. P. Kiselev, “Method of Molecular Dynamics in Mechanics of Deformable Solids,” Prikl. Mekh. Tekh. Fiz. 55 (3), 113–139 (2014) [J. Appl. Mech. Tech. Phys. 55 (3), 470–493 (2014)].

    MATH  Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Statistical Physics. Pt 1 (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kiselev.

Additional information

Original Russian Text © S.P. Kiselev, V.P. Kiselev.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 5, pp. 158–166, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, S.P., Kiselev, V.P. Numerical simulation of titanium dissolution in the aluminum melt and synthesis of an intermetallic compound. J Appl Mech Tech Phy 58, 895–903 (2017). https://doi.org/10.1134/S0021894417050169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417050169

Keywords

Navigation