Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 58, Issue 5, pp 853–861 | Cite as

A new algorithm of mass flow rate determination in gas production and transportation systems via pressure measurement

  • E. A. BondarevEmail author
  • I. I. Rozhin
  • K. K. Argunova
Article

Abstract

The current algorithm for calculating mass flow rate in gas production and transportation systems from outlet pressure measurements is generalized to the case where the inner cross section of the pipe changes with time and is also to be determined in the course of solving the general problem. The generalized algorithm is recommended for identification of gas hydrate formation in the above-mentioned systems. The identification of hydrates in a main gas pipeline in permafrost is considered as an example.

Keywords

conjugate heat-transfer problems natural gas production and transportation natural gas hydrates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Bondarev, V. I. Vasil’ev, A. F. Voevodin, N. N. Pavlov and A. P. Shadrina, Thermohydrodynamics of Gas Production and Transportation Systems (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  2. 2.
    K. K. Argunova, E. A. Bondarev, and I. I. Rozhin, “Mathematical Models of Hydrate Formation in Gas Wells,” Kriosfera Zemli 15 (2), 65–69 (2011).zbMATHGoogle Scholar
  3. 3.
    E. A. Bondarev and K. K. Argunova, “Mathematical Models of Hydrate Formation in Gas Wells,” Information and Mathematical Technologies in Science and Management: Proc. 14th Baikal Proc. Conf., Irkutsk–Baikal, July 5–15, 2009 (Irkutsk Inst. Energy Systems, Irkutsk, 2009), Pt 3, pp. 41–51.Google Scholar
  4. 4.
    E. A. Bondarev, I. I. Rozhin, and K. K. Argunova, “Modeling Hydrate Formation in Gas Wells under Their Thermal Interaction with Rock,” Inzh.-Fiz. Zh. 87 (4), 871–878 (2014).Google Scholar
  5. 5.
    O. F. Vasil’ev, E. A. Bondarev, A. F. Voevodin, M. A. Kanibolotskii, Nonisothermal Gas Flow in Pipes (Nauka, Novosibirsk, 1978) [in Russian].Google Scholar
  6. 6.
    I. I. Blekhman, A. D. Myshkis, and Ya G. Panovko, Applied Mathematics: Subject, Logic, and Approaches (Nauk. Dumka, Kiev, 1976) [in Russian].zbMATHGoogle Scholar
  7. 7.
    E. A. Bondarev, A. F. Voevodin, M. A. Kanibolotskii, and E. A. Metlyaeva, “Inverse Problems of Stationary Nonisothermal Gas Flow in Pipes,” Izv. Akad. Nauk SSSR. Energetika i Transport, No. 1, 143–145 (1977).Google Scholar
  8. 8.
    E. A. Bondarev, A. F. Voevodin, and V. S. Nikiforovskaya, Methods of Identification of Mathematical Models of Hydraulics (Izdat. Dom Sev.-Vost. Feder. Univ., Yakutsk, 2014) [in Russian].Google Scholar
  9. 9.
    E. D. Sloan, Clathrate Hydrates of Natural Gases (Marcel Dekker, New York 1998).Google Scholar
  10. 10.
    E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases (Taylor and Francis Group, Boca Raton, 2008).Google Scholar
  11. 11.
    V. V. Latonov and G. R. Gurevich, “Calculation of the Compressibility of Natural Gases,” Gaz. Promysh., No. 2, 7–9 (1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. A. Bondarev
    • 1
    Email author
  • I. I. Rozhin
    • 1
  • K. K. Argunova
    • 1
  1. 1.Institute of Oil and Gas Problems, Siberian BranchRussian Academy of SciencesYakutskRussia

Personalised recommendations