Skip to main content
Log in

Internal wave bore in the shelf zone of the sea

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents the observation results for the internal wave bore in the coastal region of the Sea of Japan with the use of vertical thermistor chains. The data obtained is interpreted by the mathematical models of shallow water in which the effect of nonlinearity and dispersion on the propagation of internal wave trains is taken into account. Within the framework of the theory of multilayer shallow water, the problem of transformation of a solitary wave into an internal bore is solved, and the possibility of recovery of a space-time picture of the flow during the passage of an internal bore in the section between adjacent experimental bottom stations is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Helfrich and W. K. Melville, “Long Nonlinear Internal Waves,” Ann. Rev. Fluid Mech. 38, 395–425 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Scotti and J. Pineda, “Observation of Very Large and Steep Internal Waves of Elevation near the Massachusetts Coast,” Geophys. Res. Lett. 31, L22307 (2004).

    Article  ADS  Google Scholar 

  3. R. Grimshaw, K. Helfrich, and A. Scotti, “Large Amplitude Internal Waves in the Coastal Ocean,” Nonlinear Process. Geophys. 18, 653–665 (2011).

    Article  ADS  Google Scholar 

  4. O. G. Konstantinov and V. V. Novotryasov, “Surface Manifestation of Internal Waves Observed Using a Lang- Based Video System,” Izvestiya, Atmospheric and Oceanic Physics 49 (3), 334–338 (2013).

    Article  ADS  Google Scholar 

  5. V. F. Kukarin, V. Yu. Liapidevskii, V. V. Navrotskii, et al., “Evolution of Internal Waves of Large Amplitude in the Shelf Zone of the Sea,” Fundam. i Prikl. Gidrofizika 6 (2), 35–45 (2013).

    Google Scholar 

  6. V. V. Navrotskii, V. Yu. Liapidevskii, and E. P. Pavlova, “Internal Waves and Their Biological Effects in the Shelf Zone of the Sea,” Vestn. Dalnevost. Otd. Ros. Akad. Nauk, No. 6, 22–31 (2012).

    Google Scholar 

  7. A. N. Silver and K. P. Pao, “Passage of Nonlinear Internal Waves Through a Revolution Pointin the Shelf Zone,” Dokl. Akad. Nauk 420 (4), 543–547 (2008).

    Google Scholar 

  8. V. V. Novotryasov, D. V. Stepanov, and I. O. Yaroshchuk, “Observations of Internal Undular Bores on the Japan/East Sea Shelf-Coastal Region,” Ocean Dynamics 66 (1), 19–25 (2016).

    Article  ADS  Google Scholar 

  9. T. G. Talipova, E. N. Pelinovskii, A. A. Kurkin, et al., “Modeling the Dynamics of Intense Internal Waves on the Shelf,” Izvestiya, Atmospheric and Oceanic Physics 50 (6), 630–637 (2014).

    Article  ADS  Google Scholar 

  10. A. P. Leontyev, I. O. Yaroshchuk, S. V. Smirnov, et al., “A Spatially Distributed Measuring Complex for Monitoring Hydrophysical Processes on the Ocean Shelf,” Instruments and Experimental Techniques 60 (1), 130–136 (2017).

    Article  Google Scholar 

  11. I. O. Yaroshchuk, A. P. Leont’ev, A. V. Kosheleva, et al., “On Intense Internal Waves in the Coastal Zone of the Peter the Great Bay (the Sea of Japan),” Russian Meteorology and Hydrology 41 (9), 629–634 (2016).

    Article  Google Scholar 

  12. N. I. Makarenko, “Conjugate Flows and Smooth Bores in a Weakly Stratified Fluid,” Prikl. Mekh. Tekh. Fiz. 40 (2), 69–78 (1999) [J. Appl. Mech. Tech. Phys. 40 (2), 249–257 (1999)].

    MathSciNet  MATH  Google Scholar 

  13. V. Yu. Liapidevskii and V. M. Teshukov, Mathematical Models of Propagation of Long Waves in Inhomogeneous Fluid (Izd. Sib. Otd. Ros. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  14. N. V. Gavrilov, V. Yu. Liapidevskii, and V. Z. Lyapidevskaya, “Effect of Dispersion on the Propagation of Internal Waves in the Shelf Zone,” Fundam. i Prikl. Gidrofizika 6 (2), 25–34 (2013).

    Google Scholar 

  15. N. V. Gavrilov, V. Yu. Liapidevskii, and V. Z. Lyapidevskaya, “Transformation of Internal Waves of Large Amplitude Above the Shelf Zone,” Fundam. i Prikl. Gidrofizika 8 (3), 32–43 (2015).

    Google Scholar 

  16. W. Choi, “Modeling of Strongly Nonlinear Internal Gravity Waves,” in Proc. of the 4th Intern. Conf. on Hydrodynamics, Yokohama, 7–9 Sept. 2000 (Yokohama, 2000).

    Google Scholar 

  17. K. R. Helfrich, “Decay and Return of Internal Solitary Waves with Rotation,” Phys. Fluids. 19, 026.601 (2007).

    Article  MATH  Google Scholar 

  18. F. Serre, “Contribution `a L’´etude des ´Ecoulements Permanents et Variables Dans Les Canaux,” Houille Blanche 8 (3), 374–388 (1953).

    Article  Google Scholar 

  19. S. L. Gavrilyuk, V. Yu. Liapidevskii, and A. A. Chesnokov, “Spilling Breakers in Shallow Water: Applications to Favre Waves and to the Shoaling and Breaking of Solitary Waves,” J. Fluid Mech. 808, 441–468 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. W. Choi and R. Camassa, “Fully Nonlinear Internal Waves in a Two-Fluid System,” J. Fluid Mech. 386, 1–36 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. N. V. Gavrilov and V. Yu. Liapidevskii, “Finite-Amplitude Solitary Waves in a Two-Layer Fluid,” Prikl. Mekh. Tekh. Fiz. 51 (4), 26–38 (1999) [J. Appl. Mech. Tech. Phys. 51 (4), 471–481 (1999)].

    MathSciNet  Google Scholar 

  22. O. Le Metayer, S. Gavrilyuk, and S. Hank, “A Numerical Scheme for the Green — Naghdi Model,” J. Comput. Phys. 229, 2034–2045 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. N. V. Gavrilov, V. Yu. Liapidevskii, and K. Gavrilova, “Large Amplitude Internal Solitary Waves over a Shelf,” Natur. Hazards Earth Systems Sci. 11, 17–25 (2011).

    Article  ADS  Google Scholar 

  24. N. V. Gavrilov, V. Yu. Liapidevskii, and K. Gavrilova, “Mass and Momentum Transfer by Solitary Internal Waves in a Shelf Zone,” Nonlinear Process. Geophys. 19, 265–272 (2012).

    Article  ADS  Google Scholar 

  25. D. Bourgault, M. D. Blokhina, R. Mirshak, et al., “Evolution of a Shoaling Internal Solitary Wavetrain,” Georhys. Res. Lett. 34, L03601 (2007).

    ADS  Google Scholar 

  26. V. Vlasenko and K. Hutter, “Numerical Experiments on the Breaking of Solitary Internal Waves over a Slope- Shelf Topography,” J. Phys. Oceanography 32, 1779–1793 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. E. Holloway, “Internal Hydraulic Jumps and Solitons at a Shelf Break Region on the Australian North West Shelf,” J. Geophys. Res. 92 (C5), 5405–5416 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Liapidevskii.

Additional information

Original Russian Text © V.Yu. Liapidevskii, V.V. Novotryasov, F.F. Khrapchenkov, I.O. Yaroshchuk.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 5, pp. 60–71, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liapidevskii, V.Y., Novotryasov, V.V., Khrapchenkov, F.F. et al. Internal wave bore in the shelf zone of the sea. J Appl Mech Tech Phy 58, 809–818 (2017). https://doi.org/10.1134/S0021894417050066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417050066

Keywords

Navigation