Skip to main content
Log in

Rayleigh–Taylor instability of high-velocity condensed-matter liners

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A review of publications on the Rayleigh–Taylor instability arising during high-velocity implosion of liners is presented. Papers that describe experimental testing and numerical simulation of the development and suppression of this instability are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Reinovsky, W. E. Anderson, W. L. Atchison, et al., “Pulsed Power Hydrodynamics: a New Application of High Magnetic Field,” in Proc. of the 9th Intern. Conf. on Megagauss Magnetic Field Generation and Related Topics, Moscow — St.-Petersburg, 2002 (Inst. Exp. Phys., Sarov, 2004), pp. 696–705.

    Google Scholar 

  2. R. E. Reinovsky, W. L. Atchison, C. Rousculp, and A. Kaul, “Pulsed High Magnetic Fields for Exploring the Dynamic Properties of Materials,” in Proc. of the 13th Intern. Conf. on Megagauss Magnetic Field Generation and Related Topics, Suzhou (China), July 6–9, 2010 (Nat. Univ. Defense Technol., Chángsha, 2012), pp. 44–45.

    Google Scholar 

  3. G. Boffetta and A. Mazzino, “Incompressible Rayleigh–Taylor Turbulence,” Annual Rev. Fluid Mech. 49, 119–143 (2017).

    Article  ADS  MATH  Google Scholar 

  4. A. L. Velikovich, “Mitigation of Rayleigh–Taylor Instability in High-Energy Density Plasmas. A Personal Perspective,” in Abstr. book of the 42nd IEEE Intern. Conf. on Plasma Science, Belek, Antalya (Turkey), May 24–28, 2015 (IEEE, 2015), p. 621.

    Google Scholar 

  5. G. I. Taylor, “The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes. 1,” Proc. Roy. Soc. London. Ser. A 201 (1065), 192–196 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D. J. Lewis, “The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes. 2,” Proc. Roy. Soc. London. Ser. A 202 (1068), 81–96 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  7. L. D. Landau and E. M. Lifshits, Fluid Mechanics (Nauka, Moscow, 1986; Addison-Wesley, Reading, 1987).

    MATH  Google Scholar 

  8. E. G. Harris, “Rayleigh–Taylor Instabilities of a Collapsing Cylindrical Shell in a Magnetic Field,” Phys. Fluids 5 (9), 1057–1062 (1962).

    Article  ADS  MATH  Google Scholar 

  9. S. F. Garanin, Physical Processes in the MAGO-MTF Systems (Inst. Exp. Phys., Sarov, 2012; Los Alamos, LA-UR-13-29094, 2013).

    Google Scholar 

  10. E. Ott, “Nonlinear Evolution of the Rayleigh–Taylor of Thin Layers,” Phys. Rev. Lett. 29 (21), 1429–1432 (1972).

    Article  ADS  Google Scholar 

  11. P. B. Garabedian, “On Steady-State Bubbles Generated by Taylor Instability,” Proc. Roy. Soc. London. Ser. A 241 (1226), 423–431 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. G. Birkhoff and D. Carter, “Rising Plane Bubbles,” J. Math. Mech. 6 (6), 769–779 (1957).

    MathSciNet  MATH  Google Scholar 

  13. G. R. Baker, D. I. Meiron, and S. A. Orszag, “Vortex Simulations of the Rayleigh–Taylor Instability,” Phys. Fluids 23, 1485–1490 (1980).

    Article  ADS  MATH  Google Scholar 

  14. C. L. Gardner, J. Glimm, O. McBryan, et al., “The Dynamics of Bubble Growth for Rayleigh–Taylor Unstable Interfaces,” Phys. Fluids 31 (3), 447–465 (1988).

    Article  ADS  MATH  Google Scholar 

  15. S. W. Haan, “Onset of Nonlinear Saturation for Rayleigh–Taylor Growth in the Presence of a Full Spectrum of Modes,” Phys. Rev. A 39 (11), 5812–5825 (1989).

    Article  ADS  Google Scholar 

  16. R. E. Reinovsky, W. E. Anderson, W. L. Atchison, et al., “Instability Growth in Magnetically Imploded High- Conductivity Cylindrical Liners with Material Strength,” IEEE Trans. Plasma Sci. 30 (5), 1764–1776 (2002).

    Article  ADS  Google Scholar 

  17. D. B. Sinars, S. A. Slutz, M. C. Herrmann, et al., “Measurements of Magneto-Rayleigh–Taylor Instability Growth during the Implosion of Initially Solid Metal Liners,” Phys. Plasmas 18, 056301 (2011).

    Article  ADS  Google Scholar 

  18. O. I. Volchenko, I. G. Zhidov, E. E. Meshkov, and V. G. Rogachev, “Development of Localized Perturbations on an Unstable Boundary of an Accelerated Liquid Layer,” Pis’ma v Zh. Tekh. Fiz. 15 (1), 47–51 (1989).

    Google Scholar 

  19. S. F. Garanin and A. I. Startsev, “Numerical Simulation of Nonlinear Growth of Localized Perturbations with Angles in the Case of the Rayleigh–Taylor Instability,” Vopr. Atom. Nauki Tekhniki, Ser. Teoret. Prikl. Fiz., No. 3, 6–9 (1992).

    Google Scholar 

  20. S. F. Garanin, “Self-Similar Evolution of Rayleigh–Taylor Instability in the Corner-Point Regions,” in Proc. of the 5th Intern. Workshop on Compressible Turbulent Mixing, Stony Brook, New York, 1995 (World Sci., Singapore–New Jersey–London–Hong Kong, 1995), pp. 33–39.

    Google Scholar 

  21. V. F. D’yachenko and V. S. Imshennik, “Two-Dimensional Magnetohydrodynamic Model of the Plasma Focus of the Z-Pinch,” in Issues of the Plasma Theory. Vol. 8 (Atomizdat, Moscow, 1974), pp. 164–246.

    Google Scholar 

  22. V. V. Vikhrev and S. I. Braginskii, “Dynamics of the Z-Pinch,” in Issues of the Plasma Theory, Vol. 10 (Atomizdat, Moscow, 1980), pp. 243–318.

    Google Scholar 

  23. S. F. Garanin, O. A. Amelicheva, O. M. Burenkov, et al., “Relaxation of a 3D MHD Flow across a Magnetic Field (2D Hydrodynamic Flow) in a Bounded Region,” Zh. Eksp. Teor. Fiz. 124 (1), 70–79 (2003) [J. Exp. Theor. Phys. 97 (1), 61–69 (2003)].

    Google Scholar 

  24. S. F. Garanin, E. M. Kravets, O. M. Pronina, and A. L. Stadnik, “Rayleigh–Taylor Instability in a Two- Dimensional Case,” in Problems of High Energy Density Physics, Proc. Intern. Conf. “12th Khariton’s Topical Scientific Readings,” Sarov, 2010 (Inst. Exp. Phys., Sarov, 2010), pp. 235–239.

    Google Scholar 

  25. V. K. Chernyshev, V. N. Mokhov, M. S. Protasov, et al., “Investigation of Liner Ponderomotive Units used as a Driver in a System with Magnetic Compression,” Vopr. Atom. Nauki Tekhniki. Ser. Mat. Model. Fiz. Prots., No. 4, 42–50 (1992).

    Google Scholar 

  26. A. M. Buyko, V. V. Zmushko, V. N. Mokhov, et al., “On Feasibility to Achieve High Longitudinal Symmetry of Cylindrical Metal Liners Compressed by Currents from Most Powerful Disk EMG,” in Digest of Tech. Papers 12th IEEE Intern. Pulsed Power Conf., Monterey (USA), June 27–30, 1999, pp. 1145–1148.

    Google Scholar 

  27. R. E. Reinovsky, “Pulsed Power Experiments in Hydrodynamics and Material Properties,” in Digest of Tech. Papers 12th IEEE Intern. Pulsed Power Conf., Monterey (USA), June 27–30, 1999, pp. 38–43.

    Google Scholar 

  28. A. M. Buyko, O. M. Burenkov, V. V. Zmushko, et al., “On the Feasibility to Achieve High Pressures with Disk EMG Driven Impacting Liners,” in Digest of Tech. Papers: Pulsed Power Plasma Science — 2001 (Inst. Electric. Electron. Engrs, Las Vegas, 2001), pp. 516–519.

    Google Scholar 

  29. R. K. Keinigs, W. L. Atchison, W. E. Anderson, et al., “Material Science Experiments on the Atlas Facility,” in Digest of Tech. Papers: Pulsed Power Plasma Science — 2001 (Inst. Electric. Electron. Engrs, Las Vegas, 2001), pp. 356–360.

    Google Scholar 

  30. S. F. Garanin, V. I. Mamyshev, and V. B. Yakubov, “The MAGO System: Current Status,” IEEE Trans. Plasma Sci. 34 (5), pt 3, 2273–2278 (2006).

    Article  ADS  Google Scholar 

  31. J. H. Degnan, T. Cavazos, D. Clark, et al., “On Research on Magnetic Pressure Implosions of Long Cylindrical Liners, Suitable for Subsequent Compression of the Field Reversed Configuration Type of Compact Toroids,” in Proc. of the 9th Intern. Conf. on Megagauss Magnetic Field Generation and Related Topics, Moscow — St.-Petersburg, 2002 (Inst. Exp. Phys., Sarov, 2004), pp. 730–737.

    Google Scholar 

  32. D. B. Sinars, “Magneto-Inertial Fusion Research in the United States: A Promising Prospect,” in Abstracts of the 42nd IEEE Intern. Conf. on Plasma Science, Belek, Antalya (Turkey), May 24–28, 2015 (IEEE, 2015), p. 245.

    Google Scholar 

  33. S. F. Garanin, G. G. Ivanova, D. V. Karmishin, and V. N. Sofronov, “Diffusion of a Megagauss Field into a Metal,” Prikl. Mekh. Tekh. Fiz. 46 (2), 5–12 (2005) [J. Appl. Mech. Tech. Phys. 46 (2), 153–159 (2005)].

    Google Scholar 

  34. W. L. Atchison, R. J. Faehl, I. R. Lindemuth, et al., “Dependence of Solid Liner Stability on Drive Conditions during Magnetic Implosion,” in Proc. of the 9th Intern. Conf. on Megagauss Magnetic Field Generation and Related Topics, Moscow — St.-Petersburg, 2002 (Inst. Exp. Phys., Sarov, 2004), pp. 710–717.

    Google Scholar 

  35. A. M. Buyko, S. F. Garanin, D. V. Karmishin, et al., “Analysis of the Liner Stability in Various Experiments,” IEEE Trans. Plasma Sci. 36 (1), 4–9 (2008).

    Article  ADS  Google Scholar 

  36. I. D. Sofronov, O. A. Vinokurov, V. V. Zmushko, et al., “MIMOZA Software Complex. Solution of Multidimensional Problems of Hydrodynamics,” in Issues of Mathematical modeling, Computational Mathematics, and Informatics (Inst. Exp. Phys., Moscow, Arzamas-16, 1994), pp. 94–96.

    Google Scholar 

  37. A. M. Buyko, S. F. Garanin, V. V. Zmushko, et al., “2D Computations for Perturbation Growth of Magnetically Driven Cylindrical Aluminum and Aluminum Alloy Liners,” in Proc. of the 7th Intern. Workshop Phys. Compressible Turbulent Mixing, St.-Petersburg (Russia), 1999 (Inst. Exp. Phys., Sarov, 2001), pp. 237–243.

    Google Scholar 

  38. V. A. Raevskii, A. I. Lebedev, P. N. Nizovtsev, et al., “Investigation of the Rayleigh–Taylor Instability in Copper and Aluminum at Pressures up to 45 GPa and Strain Rates of 105–108 s−1,” in Abstracts of Intern. Conf. “5th Khariton’s Topical Readings: Substances, Materials, and Structures under Intense Dynamic Actions” (Inst. Exp. Phys., Sarov, 2003, pp. 180–181).

    Google Scholar 

  39. Yu. V. Bat’kov, V. N. Knyazev, S. A. Novikov, et al., “Shear Strength of Aluminum upon Shockless Compression,” Fiz. Goreniya Vzryva 35 (6), 115–118 (1999) [Comb., Expl., Shock Waves 35 (6), 707–710 (1999)].

    Google Scholar 

  40. A. M. Buyko, S. F. Garanin, V. V. Zmushko, et al., “On Stabilization of Implosion of Condensed Liners,” Prikl. Mekh. Tekh. Fiz. 50 (3), 3–14 (2009) [J. Appl. Mech. Tech. Phys. 50 (3), 361–370 (2009)].

    Google Scholar 

  41. A. I. Pavlovskii, A. I. Bykov, M. I. Dolotenko, et al., “Cumulation of Superstrong Magnetic Fields,” in High Energy Densities (collected scientific papers) (Inst. Exp. Phys., Sarov, 1997, pp. 446–468).

    Google Scholar 

  42. J. Davis, N. A. Gondarenko, and A. L. Velikovich, “Fast Commutator of High Current in Double Wire Array Z-Pinch Loads,” Appl. Phys. Lett. 70, 170–172 (1997).

    Article  ADS  Google Scholar 

  43. D. L. Book and P. J. Turchi, “Dynamics of Rotationally Stabilized Implosions of Compressible Liquid Shells,” Phys. Fluids 22, 68–78 (1979).

    Article  ADS  MATH  Google Scholar 

  44. K. J. Peterson, T. J. Awe, E. P. Yu, et al., “Electrothermal Instability Mitigation by Using Thick Dielectric Coatings on Magnetically Imploded Conductors,” Phys. Rev. Lett. 112, 135002(5) (2014).

    Article  ADS  Google Scholar 

  45. S. F. Garanin, S. D. Kuznetsov, V. N. Mokhov, et al., “On Feasibility of Rayleigh–Taylor Instability Magnetic Stabilization of Liner Implosions,” in Proc. of the 8th Intern. Conf. on Megagauss Magnetic Field Generation and Related Topics, Tallahassee (USA), 1998 (World. Sci., Singapore, 2004), pp. 563–567.

    Google Scholar 

  46. B. G. Anderson, W. E. Anderson, W. L. Atchison, et al., “Liner Experiment on Verification of Rayleigh–Taylor Instability Magnetic Stabilization Effect (Joint LANL/VNIIEF Experiment Pegasus-2),” in Digest Tech. Papers: Pulsed Power Plasma Science — 2001 (Inst. Electric. Electron. Engrs, Las Vegas, 2001), pp. 354–355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Garanin.

Additional information

Original Russian Text © S.F. Garanin, A.M. Buyko, V.B. Yakubov.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 5, pp. 26–43, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garanin, S.F., Buyko, A.M. & Yakubov, V.B. Rayleigh–Taylor instability of high-velocity condensed-matter liners. J Appl Mech Tech Phy 58, 779–793 (2017). https://doi.org/10.1134/S0021894417050030

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417050030

Keywords

Navigation