Skip to main content
Log in

Effect of variable thermal conductivity models on the combined convection heat transfer in a square enclosure filled with a water–alumina nanofluid

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

In this numerical study, the effects of variable thermal conductivity models on the combined convection heat transfer in a two-dimensional lid-driven square enclosure are investigated. The fluid in the square enclosure is a water-based nanofluid containing alumina nanoparticles. The top and bottom horizontal walls are insulated, while the vertical walls are kept at different constant temperatures. Five different thermal conductivity models are used to evaluate the effects of various parameters, such as the nanofluid bulk temperature, nanoparticle size, nanoparticle volume fraction, Brownian motion, interfacial layer thickness, etc. The governing stream–vorticity equations are solved by using a second-order central finite difference scheme coupled with the conservation of mass and energy. It is found that higher heat transfer is predicted when the effects of the nanoparticle size and bulk temperature of the nanofluid are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” in Developments and Applied of Non-Newtonian Flows (ASME, New York, 1995), Vol. 231, pp. 99–105.

    Google Scholar 

  2. J. A. Eastman, S. U. S. Choi, S Li, et al., “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Appl. Phys. Lett. 78 (6), 718–720 (2001).

    Article  ADS  Google Scholar 

  3. S. Kakac and A. Pramuanjaroenkij, “Review of Convective Heat Transfer Enhancement with Nanofluids,” Int. J. Heat Mass Transfer 52, 3187–3196 (2009).

    Article  MATH  Google Scholar 

  4. R. Saidur, K. Y. Leong, and H. A. Mohammad, “A Review on Applications and Challenges of Nanofluids,” Renewable Sustainable Energy Rev. 15, 1646–1668 (2011).

    Article  Google Scholar 

  5. K. Khanafer and K. Vafai, “A Critical Synthesis of Thermophysical Characteristics of Nanofluids,” Int. J. Heat Technol. 54, 4410–4428 (2011).

    Article  MATH  Google Scholar 

  6. V. I. Terekhov, S. V. Kalinina, and V. V. Lemanov, “The Mechanism of Heat Transfer in Nanofluids: State of the Art (Review). 1. Synthesis and Properties of Nanofluids,” Thermophys. Aeromech. 17 (1), 1–14 (2010).

    Article  ADS  Google Scholar 

  7. I. M. Mahbubul, R. Saidur, and M. A. Amalina, “Latest Developments on the Viscosity of Nanofluids,” Int. J. Heat Mass Transfer 55, 874–885 (2012).

    Article  Google Scholar 

  8. P. C. Mukesh Kumar, J. Kumar, and S. Suresh, “Review on Nanofluid Theoretical Viscosity Models,” Int. J. Eng Innovat. Res. 1 (2), 128–134 (2012).

    Google Scholar 

  9. R. K. Tiwari and M. K. Das, “Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids,” Int. J. Heat Mass Transfer 50, 2002–2018 (2007).

    Article  MATH  Google Scholar 

  10. H. F. Oztop and E. Abu-Nada, “Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids,” Int. J. Heat Fluid Flow 29, 1326–1336 (2008).

    Article  Google Scholar 

  11. A. J. Chamkha and E. Abu-Nada, “Mixed Convection Flow in Single and Double-Lid Driven Square Cavities Filled with Water–Al2O3 Nanofluid: Effect of Viscosity Models,” Eur. J. Mech., B: Fluids 36, 82–96 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. G. A. Sheikhzadeh, N. Hajialigol, M. Ebrahim Qomi, and A. Fattahi, “Laminar Mixed Convection of Cu–Water Nano-Fluid in Twosided Lid-Driven Enclosures,” J. Nanostructure 1, 44–53 (2012).

    Google Scholar 

  13. H. F. Oztop, M. Mobedi, E. Abu-Nada, and I. Pop, “A Heatline Analysis of Natural Convection in a Square Inclined Enclosure Filled with a CuO Nanofluid under Non-Uniform Wall Heating Condition,” Int. J. Heat Mass Transfer 55, 5076–5086 (2012).

    Article  Google Scholar 

  14. A. Ghafouri and M. Salari, “Numerical Investigation of the Heat Transfer Enhancement using Various Viscosity Models in Chamber Filled withWater–CuO Nanofluid,” J. Brazilian Soc.Mech. Sci. Eng. 36 (4), 825–836 (2014); DOI: 10.1007/s40430-013-0091-1.

    Article  Google Scholar 

  15. J. C. Maxwell-Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. Roy. Soc., London, Ser. A 203, 385–420 (1904).

    Article  ADS  MATH  Google Scholar 

  16. E. Abu-Nada, “Effects of Variable Viscosity and Thermal Conductivity of Al2O3–Water Nanofluid on Heat Transfer Enhancement in Natural Convection,” Int. J. Heat Fluid Flow 30, 679–690 (2009).

    Article  Google Scholar 

  17. C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement,” Appl. Phys. Lett. 87 (15), 153107 (2005).

    Article  ADS  Google Scholar 

  18. S. M. Sebdani, M. Mahmoodi, and S. M. Hashemi, “Effect of Nanofluid Variable Properties on Mixed Convection in a Square Cavity,” Int. J. Thermal Sci. 52, 112–126 (2012).

    Article  Google Scholar 

  19. E. Abu-Nada, Z. Masoud, H. F. Oztop, and A. Campo, “Effect of Nanofluid Variable Properties on Natural Convection in Enclosures,” Int. J. Thermal Sci. 49, 479–491 (2010).

    Article  Google Scholar 

  20. V. I. Terekhov, S. V. Kalinina, and V. V. Lemanov, “The Mechanism of Heat Transfer in Nanofluids: State of the Art (Review). 2. Convective Heat Transfer,” Thermophys. Aeromech. 17 (2), 157–171 (2010).

    Article  ADS  Google Scholar 

  21. G. A. Sheikhzadeh, M. Ebrahim Qomi, N. Hajialigol, and A. Fattahi, “Numerical Study of Mixed Convection Flows in a Lid-Driven Enclosure Filled with Nanofluid using Variable Properties,” Results Phys. 2, 5–13 (2012).

    Article  ADS  Google Scholar 

  22. S. Parvin, R. Nasrin, M. A. Alim, et al., “Thermal Conductivity Variation on Natural Convection Flow of Water–Alumina Nanofluid in an Annulus,” Int. J. Heat Mass Transfer 55, 5268–5274 (2012).

    Article  Google Scholar 

  23. N. Pourmahmoud, A. Ghafouri, and I. Mirzaee, “Numerical Study of Mixed Convection Heat Transfer in Lid- Driven Cavity Using Nanofluid; Effect of Type and Model of Nanofluid,” J. Thermal Sci. 19 (5), 1575–1590 (2015).

    Article  Google Scholar 

  24. N. Pourmahmoud, A. Ghafouri, and I. Mirzaee, “Numerical Comparison of Viscosity Models on Mixed Convection in Double Lid-Driven Cavity Utilized CuO–Water Nanofluid,” J. Thermal Sci. 20 (1), 347–358 (2016).

    Article  Google Scholar 

  25. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” J. Heat Transfer 125, 567–574 (2003).

    Article  Google Scholar 

  26. K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” Int. J. Heat Mass Transfer 46, 3639–3653 (2003).

    Article  MATH  Google Scholar 

  27. C. T.Nguyen, F. Desgranges, G. Roy, et al., “Temperature and Particle-Size Dependent Viscosity Data for Water Based Nanofluids-Hysteresis Phenomenon,” Int. J. Heat Fluid Flow 28, 1492–1506 (2007).

    Article  Google Scholar 

  28. J. Koo and C. Kleinstreuer, “A New Thermal Conductivity Model for Nanofluids,” J. Nanoparticle Res. 6, 577–588 (2004).

    Article  ADS  Google Scholar 

  29. H. Xie, M. Fujii, and X. Zhang, “Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture,” Int. J. Heat Mass Transfer 48, 2926–2932 (2005).

    Article  MATH  Google Scholar 

  30. H. Angue Minsta, G. Roy, C. T. Nguyen, and D. Doucet, “New Temperature and Conductivity Data for Water-Based Nanofluids,” Int. J. Thermal Sci. 48 (2), 363–373 (2008).

    Google Scholar 

  31. H. E. Patel, T. Pradeep, T. Sundararajan, et al., “A Micro-Convection Model for Thermal Conductivity of Nanofluid,” Pramana J. Phys. 65, 863–869 (2005).

    Article  ADS  Google Scholar 

  32. E. Abu-Nada, “Effects of Variable Viscosity and Thermal Conductivity of CuO–Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation,” J. Heat Transfer 132, 052401 (2010).

    Article  Google Scholar 

  33. R. J. Krane and J. Jessee, “Some Detailed Field Measurements for a Natural Convection Flow in a Vertical Square Enclosure,” in Proc. of the 1st ASME–JSME Thermal Engineering Joint Conf. (Honolulu, 1983), Vol. 1, pp. 323–329.

    Google Scholar 

  34. T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, “A Numerical Study of Three Dimensional Natural Convection in a Differentially Heated Cubical Enclosure,” Int. J. Heat Mass Transfer 34, 1543–1557 (1991).

    Article  Google Scholar 

  35. N. C. Markatos and K. A. Pericleous, “Laminar and Turbulent Natural Convection in an Enclosed Cavity,” Int. J. Heat Mass Transfer 27, 772–775 (1984).

    MATH  Google Scholar 

  36. G. De Vahl Davis, “Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution,” Int. J. Numer. Methods Fluids 3, 249–264 (1983).

    Article  ADS  MATH  Google Scholar 

  37. C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, “Natural Convection Heat Transfer of Alumina–Water Nanofluid in Vertical Square Enclosures: An Experimental Study,” Int. J. Thermal Sci. 49, 1345–1353 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghafouri.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 1, pp. 117–131, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafouri, A., Salari, M. & Jozaei, A.F. Effect of variable thermal conductivity models on the combined convection heat transfer in a square enclosure filled with a water–alumina nanofluid. J Appl Mech Tech Phy 58, 103–115 (2017). https://doi.org/10.1134/S0021894417010126

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417010126

Keywords

Navigation