Skip to main content
Log in

Onset of convection in a multicomponent fluid layer in the presence of a uniform magnetic field

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The principle of the exchange of stabilities for magnetohydrodynamic multicomponent convection is established. If this sufficient condition holds and there are perturbations, oscillatory motions of neutral or growing amplitude can exist in the fluid. The upper bounds for the complex growth rate of such motions when at least one of the boundaries is rigid are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Turner, “Double Diffusive Phenomena,” Annual Rev. Fluid Mech. 6, 37–56 (1974).

    Article  ADS  MATH  Google Scholar 

  2. J. S. Turner, Buoyancy Effects in Fluids (Cambridge University Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  3. A. Brandt, Double Diffusive Convection, Ed. by A. Brandt and H. J. S. Fernando (Amer. Geophys. Union, Washington, 1996).

  4. T. Radko, Double-Diffusive Convection (Cambridge University Press, Cambridge, 2013).

    Book  MATH  Google Scholar 

  5. M. Kellner and A. Tilgner, “Transition to Finger Convection in Double Diffusive Convection,” Phys. Fluids 26, 094103 (2014).

    Article  ADS  Google Scholar 

  6. D. A. Nield and A. V. Kuznetsov, “The Onset of Double-Diffusive Convection in a Nanofluid Layer,” Int. J. Heat Fluid Flow 32 (4), 771–776 (2011).

    Article  Google Scholar 

  7. R. W. Schmitt, “Thermohaline Convection at Density Ratios Below One: A New Regime for Salt Fingers,” J. Marine Res. 69, 779–795 ( 2011).

    Article  Google Scholar 

  8. R. W. Griffiths, “The Influence of a Third Diffusing Component upon the Onset of Convection,” J. Fluid Mech. 92, 659–670 (1979).

    Article  ADS  MATH  Google Scholar 

  9. R. W. Griffiths, “A Note on the Formation of Salt Finger and Diffusive Interfaces in Three Component Systems,” Int. J. Heat Mass Transfer 22, 1687–1693 (1979).

    Article  Google Scholar 

  10. J. S. Turner, “Multicomponent Convection,” Annual Rev. Fluid Mech. 17, 11–44 (1985).

    Article  ADS  Google Scholar 

  11. A. J. Pearlstein, R. M. Harris, and G. Terrones, “The Onset of Convective Instability in a Triply Diffusive Fluid Layer,” J. Fluid Mech. 202, 443–465 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. R. Lopez, L. A. Romero, and A. J. Pearlstein, “Effect of Rigid Boundaries on the Onset of Convective Instability in a Triply Diffusive Fluid Layer,” Phys. Fluids A 2 (6), 897–902 (1990).

    Article  ADS  MATH  Google Scholar 

  13. G. Terrones, “Cross-Diffusion Effects on the Stability Criteria in a Triply Diffusive System,” Phys. Fluids A 5 (9), 2172–2182 (1993).

    Article  ADS  MATH  Google Scholar 

  14. S. Rionero, “Triple Diffusive Convection in Porous Media,” Acta Mech. 224, 447–458 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Rionero, “Multicomponent Diffusive-Convective Fluid Motions in Porous Layers Ultimately Boundedness, Absence of Subcritical Instabilities, and Global Nonlinear Stability for Any Number of Salts,” Phys. Fluids 25, 054104 (2013).

    Article  ADS  MATH  Google Scholar 

  16. I. S. Shivakumara and S. B. Naveen Kumar, “Linear and Weakly Nonlinear Triple Diffusive Convection in a Couple Stress Fluid Layer,” Intern. J. Heat Mass Transfer 68, 542–553 (2014).

    Article  Google Scholar 

  17. G. Terrones and A. J. Pearlstein, “The Onset of Convection in a Multicomponent Fluid Layer,” Phys. Fluids A 1 (5), 845–853 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. I. I. Ryzhkov and V. M. Shevtsova, “On Thermal Diffusion and Convection in Multicomponent Mixtures with Application to the Thermogravitational Column,” Phys. Fluids 19, 027101 (2007).

    Article  ADS  MATH  Google Scholar 

  19. I. I. Ryzhkov and V. M. Shevtsova, “Long Wave Instability of a Multicomponent Fluid Layer with the Soret Effect,” Phys. Fluids 21, 014102 (2009).

    Article  ADS  MATH  Google Scholar 

  20. I. I. Ryzhkov, “Long-Wave Instability of a Plane Multicomponent Mixture Layer with the Soret Effect,” Fluid Dyn. 4 (48), 477–490 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Pellew and R. V. Southwell, “On the Maintained Convective Motion in a Fluid Heated from Below,” Proc. Roy. Soc. London, Ser. A 176, 312–343 (1940).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J. Prakash, R. Bala, and K. Vaid, “On the Characterization of Nonoscillatory Motions in Triply Diffusive Convection,” Int. J. Fluid Mech. Res. 41 (5), 409–416 (2014).

    Article  MATH  Google Scholar 

  23. J. Prakash, R. Bala, and K. Vaid, “Upper Limits to the Complex Growth Rates in Triply Diffusive Convection,” Proc. Indian Nat. Sci. Acad. 80 (1), 115–122 (2014).

    Article  MATH  Google Scholar 

  24. J. Prakash, R. Bala, and K. Vaid, “On Characterization of Magnetohydrodynamic Triply Diffusive Convection,” J. Magnetism Magnetic Materials 377, 378–385 (2015).

    Article  ADS  MATH  Google Scholar 

  25. T. A. Yousef, A. Brandenburg, and G. Rudiger, “Turbulent Magnetic Prandtl Number and Magnetic Diffusivity Quenching from Simulations,” Astronomy Astrophys. 411, 321–327 (2003).

    Article  ADS  Google Scholar 

  26. I. Herron and J. Goodman, “The SmallMagnetic Prandtl Number Approximation SuppressesMagnetorotational Instability,” Z. Angew. Math. Phys. Bd 57, 615–622 (2006).

    Article  MATH  Google Scholar 

  27. M. H. Schultz, Spline Analysis (Prentice-Hall, Englewood Cliffs: 1973).

  28. J. R. Gupta, S. K. Sood, and U. D. Bhardwaj, “On the Characterization of Nonoscillatory Motions in a Rotatory Hydromagnetic Thermohaline Convection,” Indian J. Appl. Math. 17 (1), 100–107 (1986).

    MathSciNet  MATH  Google Scholar 

  29. M. B. Banerjee, D. C. Katoch, G. S. Dube, and K. Banerjee, “Bounds for Growth Rate of Perturbation in Thermohaline Convection,” Proc. Roy. Soc. London, Ser. A 378, 301–304 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J. R. Gupta, S. K. Sood, R. G. Shandil, et al., “Bounds for the Growth of a Perturbation in Some Double-Diffusive Convection Problems,” J. Austral. Math. Soc. Ser. B 25 (2), 276–285 (1983).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Prakash.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 1, pp. 42–54, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, J., Kumar, R. & Lata, K. Onset of convection in a multicomponent fluid layer in the presence of a uniform magnetic field. J Appl Mech Tech Phy 58, 36–46 (2017). https://doi.org/10.1134/S0021894417010047

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417010047

Keywords

Navigation