Skip to main content

One-dimensional model of two-phase fluid displacement in a slot with permeable walls


A one-dimensional model is proposed for transportation of a two-phase fluid (sandcontaining fluid and pure fluid) in the Hele-Shaw cell with permeable walls through which the pure fluid can leak off, causing the growth of the sand concentration. The model describes the process of pure fluid displacement with the emergence of the Saffman–Taylor instability and extends Koval’s model to the case of sand concentration variation owing to pure fluid outflow through the cell walls. The Riemann problem is analyzed. New flow configurations, which are not predicted by Koval’s model, are discovered.

This is a preview of subscription content, access via your institution.


  1. P. G. Saffman and G. Taylor, “The Penetration of a Fluid into a Porous Medium or a Hele-Shaw Cell Containing a More Viscous Liquid,” Proc. Roy. Soc. London, Ser. A 245, 312–329 (1958).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. G. M. Homsy, “Viscous Fingering in Porous Media,” Annual Rev. Fluid Mech. 19, 271–311 (1987).

    ADS  Article  Google Scholar 

  3. C. Chevalier, M. Amar, D. Bonn, and A. Linder, “Inertial Effects on Saffman–Taylor Viscous Fingering,” J. Fluid Mech. 552, 83–97 (2006).

    ADS  Article  MATH  Google Scholar 

  4. E. O. Dias and J. A. Miranda, “Influence of Inertia on Viscous Fingering Patterns: Rectangular and Radial Flows,” Phys. Rev., Ser. E 83, 066312 (2011).

    ADS  Article  Google Scholar 

  5. Q. Yuan and J. Azaiez, “Inertial Effects of Miscible Viscous Fingering in a Hele-Shaw Cell,” Fluid Dyn. Res. 47, 015506 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  6. P. Gondret and M. Rabaud, “Shear Instability of Two-Fluid Parallel Flow in a Hele-Shaw Cell,” Phys. Fluids 9, 3267–3274 (1997).

    ADS  Article  Google Scholar 

  7. A. V. Zvyagin, O. E. Ivashnev, and O. A. Logvinov, “Effect of Small Parameters on the Structure of the Front Formed by Unstable Viscous-Fluid Displacement from a Hele-Shaw Cell,” Fluid Dyn. 42 (4), 518–527 (2007).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. A. A. Chesnokov and I. V. Stepanova, “Stability Analysis of Shear Flows in a Hele-Shaw Cell,” Appl. Math. Comput. 265, 320–328 (2015).

    MathSciNet  Google Scholar 

  9. A. A. Chesnokov and V. Yu. Liapidevskii, “Viscosity-Stratified Flow in a Hele-Shaw Cell,” (2015).

    Google Scholar 

  10. T. T. Al-Housseiny, P. A. Tsai, and H. A. Stone, “Control of Interfacial Instabilities Using Flow Geometry,” Natur. Phys. 8, 747–750 (2012).

    ADS  Article  Google Scholar 

  11. D. Pihler-Puzovic, R. Perillat, M. Russell, et al., “Modelling the Suppression of Viscous Fingering in Elastic-Walled Hele-Shaw Cells,” J. Fluid Mech. 731, 162–183 (2013).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. E. V. Dontsov and A. P. Peirce, “Slurry Flow, Gravitational Settling and a Proppant Transport Model for Hydraulic Fractures,” J. Fluid Mech. 760, 567–590 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  13. V. V. Shelukhin and M. Ruzicka, “On Cosserat–Bingham Fluids,” Z. Angew. Math. Mech. 93 (1), 57–72 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  14. V. V. Shelukhin and V. V. Neverov, “Flow of Micropolar and Viscoplastic Fluids in a Hele-Shaw Cell,” Prikl. Mekh. Tekh. Fiz. 55 (6), 3–15 (2014) [J. Appl. Mech. Tech. Phys. 55 (6), 905–916 (2014)].

    MathSciNet  MATH  Google Scholar 

  15. M. J. Economides and K. G. Nolte, Reservoir Stimulation (John Wiley and Sons, Chichester, 2000).

    Google Scholar 

  16. V. A. Kuz’kin, A. M. Krivtsov, and A. M. Lin’kov, “Comparative Analysis of Rheological Properties of Suspensions in Computer Simulation of the Poiseuille and Couette flows,” Fiz.-Tekh. Probl. Razrab. Polez. Iskop., No. 6, 23–33 (2014).

    Google Scholar 

  17. Yu. P. Zheltov and S. A. Khristianovich, “On Hydraulic Fracture of an Oil Reservoir,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 5, 3–41 (1955).

    Google Scholar 

  18. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Nauka, Moscow, 1966; Noordhoff, Leyden, 1975).

    MATH  Google Scholar 

  19. E. J. Koval, “A Method for Predicting the Performance of Unstable Miscible Displacement in Heterogeneous Media,” Soc. Petroleum Eng. J. 450, 145–154 (1963).

    Article  Google Scholar 

  20. S. V. Golovin, V. I. Isaev, A. N. Baikin, et al., “Hydraulic Fracture Numerical Model Free of Explicit Tip Tracking,” Int. J. Rock Mech. Mining Sci. 76, 174–181 (2015).

    Article  Google Scholar 

  21. A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media (Mosk. Litsei, Moscow, 1998) [in Russian].

    MATH  Google Scholar 

  22. L. V. Ovsyannikov, Lectures on the Basics of Gas Dynamics (Inst. of Computer Studies, Moscow–Izhevsk, 2003) [in Russian].

    Google Scholar 

  23. R. J. S. Booth, “On the Growth of the Mixing Zone in Miscible Viscous Fingering,” J. Fluid Mech. 655, 527–539 (2010).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. H. Nessyahu and E. Tadmor, “Non-Oscillatory Central Differencing Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 87, 408–463 (1990).

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. V. Golovin.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 1, pp. 22–36, January–February, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golovin, S.V., Kazakova, M.Y. One-dimensional model of two-phase fluid displacement in a slot with permeable walls. J Appl Mech Tech Phy 58, 17–30 (2017).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Hele-Shaw cell with permeable walls
  • Saffman–Taylor instability
  • two-phase fluid
  • admixture transportation