Abstract
This paper describes the derivation of extreme conditions of each elasticity coefficient (Young’s modulus, shear modulus, et al.,) for the general case of linear-elastic anisotropic materials. The stationarity conditions are obtained, and they determine the orthogonal coordinate systems being the principal axes of anisotropy, where the number of independent elasticity constants decreases from 21 to 18 and, in some cases of anisotropy, to 15 or lower. The example of a material with cubic symmetry is given.
Similar content being viewed by others
References
V. V. Novozhilov, The Theory of Elasticity (Sudpromgiz, Leningrad, 1958) [in Russian].
J. P. Jaric, “On the Conditions for Existence of a Plane of Symmetry for Anisotropic Elastic Materials,” Mech. Res. Comm. 21 (2), 153–174 (1994).
N. I. Ostrosablin, “The Invariants of the Fourth-Rank Elasticity Modulus Tensors,” Sib. Zh. Indust. Mat. 1 (1), 155–163 (1998).
B. D. Annin and N. I. Ostrosablin, “Anisotropy of Elastic Properties of Materials,” Prikl. Mekh. Tekh. Fiz. 49 (6), 131–151 (2008) [J. Appl. Mech. Tech. Phys. 49 (6), 998–1014 (2008)].
N. I. Ostrosablin, “The Linear Invariant Irreducible Decompositions of the Fourth-Rank Elasticity Modulus Tensor,” in Dynamics of Continuous Media, No. 120 (Lavrent’ev Inst. of Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2002), pp. 149–160.
N. I. Ostrosablin, “Canonical Moduli and General Solution of Equations of a Two-Dimensional Static Problem of Anisotropic Elasticity,” Prikl. Mekh. Tekh. Fiz. 51 (3), 94–106 (2010) [J. Appl. Mech. Tech. Phys. 51 (3), 377–388 (2010)].
J. Ostrowska-Maciejewska and J. Rychlewski, “Generalized Proper States for Anisotropic Elastic Materials,” Arch. Mech. 53 (4/5), 501–518 (2001).
F. I. Fedorov, The Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965) [in Russian].
G. Borisovich, B. M. Darinskii, and O. V. Kunakovskaya, “Application of Topological Methods to Estimate the Number of Longitudinal Elastic Waves in Crystals,” Teor. Mat. Fiz. 94 (1), 146–152 (1993).
A. S. Grishin, A. R. Loshitskii, “The Energy of Plane Elastic Waves in Anisotropic Media,” Izv. Ros. Akad. Nauk, Mekh. Tv. Tela, No. 5, 111–114 (1998).
M. Vianello, “Coaxiality of Strain and Stress in Anisotropic Linear Elasticity,” J. Elasticity, 42 (3), 283–289 (1996).
G. Geymonat and P. Gilormini, “On the Existence of Longitudinal Plane Waves in General Elastic Anisotropic Media,” J. Elasticity 54 (3), 253–266 (1999).
P. Boulanger and M. Hayes, “On Young’s Modulus for Anisotropic Media,” Trans. ASME, J. Appl. Mech. 62 (3), 819–820 (1995).
A. Cazzani and M. Rovati, “Extrema of Young’s Modulus for Cubic and Transversely Isotropic Solids,” Int. J. Solids Struct. 40 (7), 1713–1744 (2003).
A. CazzaniM. Rovati, “Extrema of Young’s Modulus for Elastic Solids with Tetragonal Symmetry,” Int. J. Solids Struct. 42 (18/19), 5057–5096 (2005).
T. C. T. Ting, “The Stationary Values of Young’s Modulus for Monoclinic and Triclinic Materials,” J. Mech. 21 (4), 249–253 (2005).
T. C. T. Ting, “Explicit Expression of the Stationary Values of Young’s Modulus and the Shear Modulus for Anisotropic Elastic Materials,” J. Mech. 21 (4), 255–266 (2005).
A. N. Norris, “Extreme Values of Poisson’s Ratio and Other Engineering Moduli in Anisotropic Materials,” J. Mech. Mater. Struct. 1 (4), 793–812 (2006).
P. Bechterew, “The Analytical Study of Generalized Hooke’s Law. The Application of the Coordinate Transformation Method,” Zh. Russ. Fiz.-Khim. Obshch. (Ch. Fiz.) 58 (3), 415–446 (1926) [ Z. Kristallogr. 63 (3/4), 223–254 (1925)].
G. de Saxcé and C. Vallée, “Invariant Measures of the Lack of Symmetry with Respect to the Symmetry Groups of 2D Elasticity,” J. Elasticity 111 (1), 21–39 (2013).
N. Auffray, B. Kolev, and M. Petitot, “On Anisotropic Polynomial Relations for the Elasticity Tensor,” J. Elasticity 115 (1), 77–103 (2014).
A. N. Norris, “Quadratic Invariants of Elastic Moduli,” Quart. J. Mech. Appl. Math. 60 (3), 367–389 (2007).
N. I. Ostrosablin, “On a Model of Anisotropic Creep of Materials,” Sib. Zh. Indust. Mat. 17 (1), 114–119 (2014).
P. Bechterew, “The Systematics of the Elastic Constants of Anisotropic Materials,” Zh. Russ. Fiz.-Khim. Obshch. (Ch. Fiz.) 60 (4), 351–353 (1928) [Z. Kristallogr. 71 (3), 274–276 (1929)].
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, 1892).
J. A. Schouten, Tensor Analysis for Physicists (Courier Corporation, 1954).
J. J. Marciniak, “The Generalized ScalarWave Equation and Linear Differential Invariants in Linear Elasticity,” Int. J. Eng. Sci. 27 (6), 679–688 (1989).
N. I. Ostrosablin, “Elastic Anisotropic Material with Purely Longitudinal and Transverse Waves,” Prikl. Mekh. Tekh. Fiz. 44 (2), 143–151 (2003) [J. Appl. Mech. Tech. Phys. 44 (2), 271–278 (2003)].
S. V. Kovalevskaya, “On the Refraction of Light in Crystalline Media,” in S. V. Kovalevskaya. Scientific Works (Izd. Akad. Nauk SSSR, Moscow, 1948) [in Russian].
E. M. Polishchuk, Vito Volterra (Nauka, Leningrad, 1977) [in Russian].
K. Helbig, “Longitudinal Directions in Media of Arbitrary Anisotropy,” Geophysics 58 (5), 680–691 (1993).
N. I. Ostrosablin, “Limit Criteria and a Model for Inelastic Deformation of Anisotropic Media,” Prikl. Mekh. Tekh. Fiz. 52 (6), 165–176 (2011) [J. Appl. Mech. Tech. Phys. 52 (6), 986–996 (2011)].
M. Hayes and A. Shuvalov, “On the Extreme Values of Young’s Modulus, the Shear Modulus, and Poisson’s Ratio for Cubic Materials,” Trans. ASME, J. Appl. Mech. 65 (3), 786–787 (1998).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 4, pp. 192–210, July–August, 2016.
Rights and permissions
About this article
Cite this article
Ostrosablin, N.I. Extreme conditions of elastic constants and principal axes of anisotropy. J Appl Mech Tech Phy 57, 740–756 (2016). https://doi.org/10.1134/S0021894416040192
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0021894416040192