Skip to main content
Log in

Extreme conditions of elastic constants and principal axes of anisotropy

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper describes the derivation of extreme conditions of each elasticity coefficient (Young’s modulus, shear modulus, et al.,) for the general case of linear-elastic anisotropic materials. The stationarity conditions are obtained, and they determine the orthogonal coordinate systems being the principal axes of anisotropy, where the number of independent elasticity constants decreases from 21 to 18 and, in some cases of anisotropy, to 15 or lower. The example of a material with cubic symmetry is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Novozhilov, The Theory of Elasticity (Sudpromgiz, Leningrad, 1958) [in Russian].

    MATH  Google Scholar 

  2. J. P. Jaric, “On the Conditions for Existence of a Plane of Symmetry for Anisotropic Elastic Materials,” Mech. Res. Comm. 21 (2), 153–174 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. I. Ostrosablin, “The Invariants of the Fourth-Rank Elasticity Modulus Tensors,” Sib. Zh. Indust. Mat. 1 (1), 155–163 (1998).

    MathSciNet  MATH  Google Scholar 

  4. B. D. Annin and N. I. Ostrosablin, “Anisotropy of Elastic Properties of Materials,” Prikl. Mekh. Tekh. Fiz. 49 (6), 131–151 (2008) [J. Appl. Mech. Tech. Phys. 49 (6), 998–1014 (2008)].

    MathSciNet  Google Scholar 

  5. N. I. Ostrosablin, “The Linear Invariant Irreducible Decompositions of the Fourth-Rank Elasticity Modulus Tensor,” in Dynamics of Continuous Media, No. 120 (Lavrent’ev Inst. of Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2002), pp. 149–160.

    Google Scholar 

  6. N. I. Ostrosablin, “Canonical Moduli and General Solution of Equations of a Two-Dimensional Static Problem of Anisotropic Elasticity,” Prikl. Mekh. Tekh. Fiz. 51 (3), 94–106 (2010) [J. Appl. Mech. Tech. Phys. 51 (3), 377–388 (2010)].

    MathSciNet  MATH  Google Scholar 

  7. J. Ostrowska-Maciejewska and J. Rychlewski, “Generalized Proper States for Anisotropic Elastic Materials,” Arch. Mech. 53 (4/5), 501–518 (2001).

    MathSciNet  MATH  Google Scholar 

  8. F. I. Fedorov, The Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  9. G. Borisovich, B. M. Darinskii, and O. V. Kunakovskaya, “Application of Topological Methods to Estimate the Number of Longitudinal Elastic Waves in Crystals,” Teor. Mat. Fiz. 94 (1), 146–152 (1993).

    Article  MathSciNet  Google Scholar 

  10. A. S. Grishin, A. R. Loshitskii, “The Energy of Plane Elastic Waves in Anisotropic Media,” Izv. Ros. Akad. Nauk, Mekh. Tv. Tela, No. 5, 111–114 (1998).

    Google Scholar 

  11. M. Vianello, “Coaxiality of Strain and Stress in Anisotropic Linear Elasticity,” J. Elasticity, 42 (3), 283–289 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Geymonat and P. Gilormini, “On the Existence of Longitudinal Plane Waves in General Elastic Anisotropic Media,” J. Elasticity 54 (3), 253–266 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Boulanger and M. Hayes, “On Young’s Modulus for Anisotropic Media,” Trans. ASME, J. Appl. Mech. 62 (3), 819–820 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Cazzani and M. Rovati, “Extrema of Young’s Modulus for Cubic and Transversely Isotropic Solids,” Int. J. Solids Struct. 40 (7), 1713–1744 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. CazzaniM. Rovati, “Extrema of Young’s Modulus for Elastic Solids with Tetragonal Symmetry,” Int. J. Solids Struct. 42 (18/19), 5057–5096 (2005).

    Article  MATH  Google Scholar 

  16. T. C. T. Ting, “The Stationary Values of Young’s Modulus for Monoclinic and Triclinic Materials,” J. Mech. 21 (4), 249–253 (2005).

    Article  Google Scholar 

  17. T. C. T. Ting, “Explicit Expression of the Stationary Values of Young’s Modulus and the Shear Modulus for Anisotropic Elastic Materials,” J. Mech. 21 (4), 255–266 (2005).

    Article  Google Scholar 

  18. A. N. Norris, “Extreme Values of Poisson’s Ratio and Other Engineering Moduli in Anisotropic Materials,” J. Mech. Mater. Struct. 1 (4), 793–812 (2006).

    Article  Google Scholar 

  19. P. Bechterew, “The Analytical Study of Generalized Hooke’s Law. The Application of the Coordinate Transformation Method,” Zh. Russ. Fiz.-Khim. Obshch. (Ch. Fiz.) 58 (3), 415–446 (1926) [ Z. Kristallogr. 63 (3/4), 223–254 (1925)].

    Google Scholar 

  20. G. de Saxcé and C. Vallée, “Invariant Measures of the Lack of Symmetry with Respect to the Symmetry Groups of 2D Elasticity,” J. Elasticity 111 (1), 21–39 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Auffray, B. Kolev, and M. Petitot, “On Anisotropic Polynomial Relations for the Elasticity Tensor,” J. Elasticity 115 (1), 77–103 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. N. Norris, “Quadratic Invariants of Elastic Moduli,” Quart. J. Mech. Appl. Math. 60 (3), 367–389 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. I. Ostrosablin, “On a Model of Anisotropic Creep of Materials,” Sib. Zh. Indust. Mat. 17 (1), 114–119 (2014).

    MathSciNet  MATH  Google Scholar 

  24. P. Bechterew, “The Systematics of the Elastic Constants of Anisotropic Materials,” Zh. Russ. Fiz.-Khim. Obshch. (Ch. Fiz.) 60 (4), 351–353 (1928) [Z. Kristallogr. 71 (3), 274–276 (1929)].

    Google Scholar 

  25. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, 1892).

    MATH  Google Scholar 

  26. J. A. Schouten, Tensor Analysis for Physicists (Courier Corporation, 1954).

    MATH  Google Scholar 

  27. J. J. Marciniak, “The Generalized ScalarWave Equation and Linear Differential Invariants in Linear Elasticity,” Int. J. Eng. Sci. 27 (6), 679–688 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  28. N. I. Ostrosablin, “Elastic Anisotropic Material with Purely Longitudinal and Transverse Waves,” Prikl. Mekh. Tekh. Fiz. 44 (2), 143–151 (2003) [J. Appl. Mech. Tech. Phys. 44 (2), 271–278 (2003)].

    MathSciNet  MATH  Google Scholar 

  29. S. V. Kovalevskaya, “On the Refraction of Light in Crystalline Media,” in S. V. Kovalevskaya. Scientific Works (Izd. Akad. Nauk SSSR, Moscow, 1948) [in Russian].

    Google Scholar 

  30. E. M. Polishchuk, Vito Volterra (Nauka, Leningrad, 1977) [in Russian].

    MATH  Google Scholar 

  31. K. Helbig, “Longitudinal Directions in Media of Arbitrary Anisotropy,” Geophysics 58 (5), 680–691 (1993).

    Article  ADS  Google Scholar 

  32. N. I. Ostrosablin, “Limit Criteria and a Model for Inelastic Deformation of Anisotropic Media,” Prikl. Mekh. Tekh. Fiz. 52 (6), 165–176 (2011) [J. Appl. Mech. Tech. Phys. 52 (6), 986–996 (2011)].

    MATH  Google Scholar 

  33. M. Hayes and A. Shuvalov, “On the Extreme Values of Young’s Modulus, the Shear Modulus, and Poisson’s Ratio for Cubic Materials,” Trans. ASME, J. Appl. Mech. 65 (3), 786–787 (1998).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Ostrosablin.

Additional information

Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 4, pp. 192–210, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrosablin, N.I. Extreme conditions of elastic constants and principal axes of anisotropy. J Appl Mech Tech Phy 57, 740–756 (2016). https://doi.org/10.1134/S0021894416040192

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416040192

Keywords

Navigation