Skip to main content
Log in

Three-dimensional stress and free vibration analyses of functionally graded plates with circular holes by the use of the graded finite element method

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Static and free vibration analyses of plates with circular holes are performed based on the three-dimensional theory of elasticity. The plates are made of a functionally graded material (FGM), and the volume fractions of the constituent materials vary continuously across the plate. The effective properties of the FGM plate are estimated by using the Mori–Tanaka homogenization method. A graded finite element method based on the Rayleigh–Ritz energy formulation is used to solve the problem. Effects of different volume fractions of the materials and hole sizes on the behavior of FGM plates under uniaxial tension are investigated. Natural frequencies of a fully clamped FGM plate with a circular cutout are derived. The results obtained are compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials (IOM Comm., London, 1998).

    Google Scholar 

  2. J. N. Reddy and Z. Q. Cheng, “Three Dimensional Thermomechanical Deformations of Functionally Graded Rectangular Plates,” Europ. J. Mech. A. Solids 20, 841–855 (2001).

    Article  ADS  MATH  Google Scholar 

  3. S. S. Vel and R. C. Batra, “Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates,” AIAA J. 40 (7), 1421–1433 (2002).

    Article  ADS  Google Scholar 

  4. M. Kashtalyan, “Three-Dimensional Elasticity Solution for Bending of Functionally Graded Plates,” Europ. J. Mech. A. Solids 23, 853–864 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. C. F. Lu, C. W. Lim, and W. Q. Chen, “Semi-Analytical Analysis for Multi-Directional Functionally Graded Plates: 3-D Elasticity Solutions,” Int. J. Numer. Methods Eng. 79, 25–44 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. H. Wen, J. Sladek, and V. Sladek, “Three-Dimensional Analysis of Functionally Graded Plates,” Int. J. Numer. Methods Eng. 87 (10), 923–942 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. N. Reddy and C. D. Chin, “Thermomechanical Analysis of Functionally Graded Cylinders and Plates,” J. Thermal Stresses 26 (1), 593–626 (1998).

    Article  Google Scholar 

  8. J. N. Reddy, “Analysis of Functionally Graded Plates,” Int. J. Numer. Methods Eng. 47, 663–684 (2000).

    Article  MATH  Google Scholar 

  9. L. D. Croce and P. Venini, “Finite Elements for Functionally Graded Reissner–Mindlin Plates,” Comput. Methods Appl. Mech. Eng. 193, 705–725 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Mechab, H. A. Atmane, A. Tounsi, et al., “A Two Variable Refined Plate Theory for the Bending Analysis of Functionally Graded Plates,” Acta Mech. Sinica 26, 941–949 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T. Prakash and M. Ganapathi, “Asymmetric Flexural Vibration and Thermoelastic Stability of FGM Circular Plates Using Finite Element Method,” Composites. Pt B 37, 642–649 (2006).

    Article  Google Scholar 

  12. S. H. Chi and Y. L. Chung, “Mechanical Behavior of Functionally Graded Material Plates under Transverse Load. Pt 1. Analysis,” Int. J. Solids Structures 43, 3657–3674 (2006).

    Article  MATH  Google Scholar 

  13. H. Matsunaga, “Free Vibration and Stability of Functionally Graded Plates According to a 2-D Higher-Order Deformation Theory,” Composite Structures 82, 499–512 (2008).

    Article  Google Scholar 

  14. E. Orakdogen, S. Kucukarslan, A. Sofiyev, and M. H. Omurtag, “Finite Element Analysis of Functionally Graded Plates for Coupling Effect of Extension and Bending,” Meccanica 45, 63–72 (2010).

    Article  MATH  Google Scholar 

  15. M. K. Singha, T. Prakash, and M. Ganapathi, “Analysis of Functionally Graded Plates Using an Edge-Based Smoothed Finite Element Method,” Finite Elements Anal. Design. 47, 453–460 (2011).

    Article  Google Scholar 

  16. H. Nguyen-Xuan, L. V. Tran, C. H. Thai, and T. Nguyen-Thoi, “Analysis of Functionally Graded Plates by an Efficient Finite Element Method with Node-Based Strain Smoothing,” Thin-Walled Structures 54, 1–18 (2012).

    Article  Google Scholar 

  17. M. H. Santare and J. Lambros, “Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials,” J. Appl. Mech. 67, 819–822 (2000).

    Article  ADS  MATH  Google Scholar 

  18. J.-H. Kim and G. H. Paulino, “Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials,” J. Appl. Mech. 69, 502–514 (2002).

    Article  ADS  MATH  Google Scholar 

  19. Z. Zhang and G. H. Paulino, “Wave Propagation and Dynamic Analysis of Smoothly Graded Heterogeneous Continua Using Graded Finite Elements,” Int. J. Solids Structures 44, 3601–3626 (2007).

    Article  MATH  Google Scholar 

  20. M. H. Santare, P. Thamburaj, and G. A. Gazonas, “The Use of Graded Finite Elements in the Study of Elastic Wave Propagation in Continuously Nonhomogeneous Materials,” Int. J. Solids Structures 40, 5621–5634 (2003).

    Article  MATH  Google Scholar 

  21. E. V. Dave, G. H. Paulino, and W. G. Buttlar, “Viscoelastic Functionally Graded Finite Element Method Using Correspondence Principle,” J. Mater. Civil Eng. 23, 39–48 (2011).

    Article  Google Scholar 

  22. M. Asgari, M. Akhlaghi, and S. M. Hosseini, “Dynamic Analysis of Two-Dimensional Functionally Graded Thick Hollow Cylinder with Finite Length under Impact Loading,” Acta Mech. 208, 163–180 (2009).

    Article  MATH  Google Scholar 

  23. M. Asgari and M. Akhlaghi, “Natural Frequency Analysis of 2D-FGM Thick Hollow Cylinder Based on Three- Dimensional Elasticity Equations,” Europ. J. Mech. A. Solids 30, 72–81 (2011).

    Article  ADS  MATH  Google Scholar 

  24. K. Asemi, M. Salehi, and M. Akhlaghi, “Elastic Solution of a Two-Dimensional Functionally Graded Thick Truncated Cone with Finite Length under Hydrostatic Combined Loads,” Acta Mech. 217, 119–134 (2011).

    Article  MATH  Google Scholar 

  25. L.-L. Cao, Q.-H. Qin, and N. Zhao, “Hybrid Graded Element Model for Transient Heat Conduction in Functionally Graded Materials,” Acta Mech. Sinica 28, 128–139 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. K. Asemi, M. Akhlaghi, and M. Salehi, “Dynamic Analysis of Thick Short FGM Cylinders,” Meccanica 47, 1441–1453 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  27. T. K. Paul and K. M. Rao, “Finite-Element Stress-Analysis of Laminated Composite Plates Containing 2 Circular Holes under Transverse Loading,” Comput. Structures 54 (4), 671–677 (1995).

    Article  ADS  MATH  Google Scholar 

  28. R. T. Tenchev, M. K. Nygard, and A. Echtermeyer, “Design Procedure for Reducing the Stress-Concentration around Circular Heres in Laminated Composites,” Composites 26 (12), 815–828 (1995).

    Article  Google Scholar 

  29. M. Y. Kaltakci, “Stress Concentrations and Failure Criteria in Anisotropic Plates with Circular Holes Subjected to Tension or Compression,” Comput. Structures 61 (1), 67–78 (1996).

    Article  MATH  Google Scholar 

  30. A. Haque, L. Ahmed, and A. Ramasetty, “Stress Concentrations and Notch Sensitivity in Woven Ceramic Matrix Composites Containing a Circular Hole—An Experimental, Analytical, and Finite Element Study,” J. Amer. Ceramic Soc. 88 (8), 2195–2201 (2005).

    Article  Google Scholar 

  31. D. V. Kubair and B. Bhanu-Chandar, “Stress Concentration Factor due to a Circular Hole in Functionally Graded Panels under Uniaxial Tension,” Int. J. Mech. Sci. 50, 732–742 (2008).

    Article  MATH  Google Scholar 

  32. M. Mohammadi, J. R. Dryden, and L. Jiang, “Stress Concentration Around a Hole in a Radially Inhomogeneous Plate,” Int. J. Solids Structures 48, 483–491 (2011).

    Article  MATH  Google Scholar 

  33. C. Hu, X.-Q. Fang, and W.-H. Huang, “Multiple Scattering of Shear Waves and Dynamic Stress from a Circular Cavity Buried in a Semi-Infinite Slab of Functionally Graded Materials,” Eng. Fracture Mech. 75, 1171–1183 (2008).

    Article  Google Scholar 

  34. X. Q. Fang, C. Hu, and S. Y. Du, “Strain Energy Density of a Circular Cavity Buried in Semi-Infinite Functionally Graded Materials Subjected to Shear Waves,” Theoret. Appl. Fracture Mech. 46, 166–174 (2006).

    Article  Google Scholar 

  35. S. K. Deb Nath, C. H. Wong, and S.-G. Kim, “A Finite-Difference Solution of Boron/Epoxy Composite Plate with an Internal Hole Subjected to Uniform Tension/Displacements Using Displacement Potential Approach,” Int. J. Mech. Sci. 58, 1–12 (2012).

    Article  Google Scholar 

  36. M. Janghorban and A. Zare, “Thermal Effect on Free Vibration Analysis of Functionally Graded Arbitrary Straight-Sided Plates with Different Cutouts,” Latin Amer. J. Solids Structures 8, 245–257 (2011).

    Google Scholar 

  37. Q. Yang, C.-F. Gao, and W. Chen, “Stress Analysis of a Functional Graded Material Plate with a Circular Hole,” Arch. Appl. Mech. 80, 895–907 (2010).

    Article  ADS  MATH  Google Scholar 

  38. A. Linkov and L. Rybarska-Rusinek, “Evaluation of Stress Concentration in Multi-Wedge Systems with Functionally Graded Wedges,” Int. J. Eng. Sci. 61, 87–93 (2012). DOI: 10.1016/ j.ijengsci.2012.06.012.

    Article  MathSciNet  Google Scholar 

  39. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

    MATH  Google Scholar 

  40. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics (Elsevier, Oxford, 2005).

    MATH  Google Scholar 

  41. R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis (John Wiley and Sons, New York, 2001).

    Google Scholar 

  42. A. Rezaei Mojdehi, A. Darvizeh, A. Basti, and H. Rajabi, “Three-Dimensional Static and Dynamic Analysis of Thick Functionally Graded Plates by the Meshless Local Petrov–Galerkin (MLPG) Method,” Eng. Anal. Boundary Elements 35, 1168–1180 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  43. Z. Yang, C. B. Kim, C. Cho, and H. G. Beom, “The Concentration of Stress and Strain in Finite Thickness Elastic Plate Containing a Circular Hole,” Int. J. Solids Structures 45, 713–731 (2008).

    Article  MATH  Google Scholar 

  44. A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, et al., “Natural Frequencies of Functionally Graded Plates by a Meshless Method,” Composite Structures 75, 593–600 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Asemi.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 4, pp. 136–148, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemi, K., Ashrafi, H. & Shariyat, M. Three-dimensional stress and free vibration analyses of functionally graded plates with circular holes by the use of the graded finite element method. J Appl Mech Tech Phy 57, 690–700 (2016). https://doi.org/10.1134/S0021894416040131

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416040131

Keywords

Navigation