Skip to main content
Log in

Effect of melting on an MHD micropolar fluid flow toward a shrinking sheet with thermal radiation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The effect of melting on a steady boundary layer stagnation-point flow and heat transfer of an electrically conducting micropolar fluid toward a horizontal shrinking sheet in the presence of a uniform transverse magnetic field and thermal radiation is studied. A similarity transformation technique is adopted to obtain self-similar ordinary differential equations, which are solved numerically. The present results are found to be in good agreement with previously published data. Numerical results for the dimensionless velocity and temperature profiles, as well as for the skin friction and the rate of heat transfer are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen, “Theory of Micropolar Fluids,” J. Math. Mech. 16, 1–18 (1964).

    MathSciNet  Google Scholar 

  2. A. C. Eringen, “Theory of Thermomicropolar Fluids,” J. Math. Anal. Appl. 138, 480–496 (1972).

    Article  MATH  Google Scholar 

  3. T. Ariman, M. A. Turk, and N. D. Sylvester, “Microcontinuum Fluid Mechanics: A Review,” Int. J. Eng. Sci. 11, 905–930 (1973).

    Article  MATH  Google Scholar 

  4. T. Ariman, M. A. Turk, and N. D. Sylvester, “Appls of Micro Fluid Mechs: A Review,” Int. J. Eng. Sci. 12, 9273–9293 (1974).

    Article  Google Scholar 

  5. G. Ahmadi, “Self-Similar Solution of Incompressible Micropolar Boundary Layer Flow over a Semi-Infinite Plate,” Int. J. Eng. Sci. 14, 639–646 (1976).

    Article  MATH  Google Scholar 

  6. G. Qukaszewicz, Micropolar Fluids: Theory and Application, (Birkhäuser, Basel, 1999).

    Book  Google Scholar 

  7. G. S. Guram and C. Smith, “Stagnation Flows of Micropolar Fluids with Strong and Weak Interactions,” Comput. Math. Appl. 6, 213–233 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. K. Jena and M. N. Mathur, “Similarity Solution for Laminar Free Convection Flow of Thermo-Micropolar Fluid Past a Non-Isothermal Vertical Flat Plate,” Int. J. Eng. Sci. 19, 1431–1439 (1981).

    Article  MATH  Google Scholar 

  9. Y. Y. Lok, I. Pop, and J. Chamkha, “Non-Orthogonal Stagnation Point Flow of a Micropolar Fluid,” Int. J. Eng. Sci. 45, 173–184 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Ishak, R. Nazar, and I. Pop, “Magnetohydrodynamic (MHD) Flow of a Micropolar Fluid Towards a Stagnation Point on a Vertical Surface,” Comput. Math. Appl. 56, 3188–3194 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ashraf and M. M. Ashraf, “MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface,” Appl. Math. Mech. 32, 45–54 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Y. Wang, “Liquid Film on an Unsteady Stretching Sheet,” Quart. Appl. Math. 48, 601–610 (1990).

    MathSciNet  MATH  Google Scholar 

  13. M. Miklavcic and C. Y. Wang, “Viscous Flow due to a Shrinking Sheet,” Quart. Appl. Math. 64, 283–290 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Y. Wang, “Stagnation Flow Towards a Shrinking Sheet,” Int. J. Nonlinear Mech. 43, 377–382 (2008).

    Article  ADS  Google Scholar 

  15. T. Hayat, Z. Abbas, T. Javed, and M. Sanjib, “Three Dimensional Rotating Flow Induced by a Shrinking Sheet for Suction,” Chaos Solitons Fractals 39, 1615–1626 (2009).

    Article  ADS  MATH  Google Scholar 

  16. B. Yao and J. Chen, “A New Analytical Solution Branch for the Blasius Equation with a Shrinking Sheet,” Appl. Math. Comput. 215, 1146–1153 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Ishak, Y. Y. Lok, and I. Pop, “Stagnation Point Flow over a Shrinking Sheet in a Micropolar Fluid,” Chem. Eng. Comm. 197, 1417–1427 (2010).

    Article  Google Scholar 

  18. T. Fan, H. Xu, and I. Pop, “Unsteady Stagnation Flow and Heat Transfer Towards a Shrinking Sheet,” Int. Comm. Heat Mass Transfer 37, 1440–1446 (2010).

    Article  Google Scholar 

  19. M. Epstein and D. H. Cho, “Melting Heat Transfer in Steady Laminar Flow over a Flat Plate,” J. Heat Transfer 98, 531–533 (1976).

    Article  Google Scholar 

  20. M. Kazmierczak, D. Poulikakos, and D. Sadowski, “Melting of a Vertical Plate in Porous Medium Controlled by Forced Convection of a Dissimilar Fluid,” Int. Comm. Heat Mass Transfer 14, 507–517 (1987).

    Article  Google Scholar 

  21. M. Kazmierczak, D. Poulikakos, and I. Pop, “Melting from a Flat Plate in a Porous Medium in the Presence of Steady Convection,” Numer. Heat Transfer 10, 571–581 (1986).

    Article  ADS  Google Scholar 

  22. W. T. Cheng and C. H. Lin, “Transient Mixed Convection Heat Transfer with Melting Effect from the Vertical Plate in a Liquid Saturated Porous Medium,” Int. J. Eng. Sci. 44, 1023–1036 (2006).

    Article  ADS  MATH  Google Scholar 

  23. A. Ishak, R. Nazar, N. Bachok, and I. Pop, “Melting Heat Transfer in Steady Laminar Flow over a Moving Surface,” Heat Mass Transfer 46, 463–468 (2010).

    Article  ADS  Google Scholar 

  24. N. A. Yacob, A. Ishak, and I. Pop, “Melting Heat Transfer in Boundary Layer Stagnation-Point Flow Towards a Stretching/Shrinking Sheet in a Micropolar Fluid,” Comput. Fluids. 47, 16–21 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. C. Cogley, W. E. Vincenty, and S. E. Gilles, “Differential Approximation for Radiation in a Non-Gray Gas Near Equilibrium,” AIAA J. 6, 551–553 (1968).

    Article  ADS  Google Scholar 

  26. A. Raptis, “Radiation and Free Convection Flow through a Porous Medium,” Int. Comm. Heat Mass Transfer 25, 289–295 (1998).

    Article  Google Scholar 

  27. O. D. Makinde, “Free Convection Flow with Thermal Radiation and Mass Transfer Past a Moving Vertical Porous Plate,” Int. Comm. Heat Mass Transfer 32, 1411–1419 (2005).

    Article  Google Scholar 

  28. F. S. Ibrahim, A. M. Elaiw, and A. A. Bakr, “Influence of Viscous Dissipation and Radiation on Unsteady MHD Mixed Convection Flow of Micropolar Fluids,” Appl. Math. Inform. Sci. 2, 143–162 (2008).

    MathSciNet  MATH  Google Scholar 

  29. K. Das, “Impact of Thermal Radiation on MHD Slip Flow over a Flate Plate with Variable Fluid Properties,” Heat Mass Transfer 48, 767–778 (2011).

    Article  ADS  Google Scholar 

  30. T. Hayat, Z. Abbas, I. Pop, and S. Asghar, “Effects of Radiation and Magnetic Field on the Mixed Convection Stagnation-Point Flow over a Vertical Stretching Sheet in a Porous Medium,” Int. J. Heat Mass Transfer 53, 466–474 (2010).

    Article  MATH  Google Scholar 

  31. G. C. Shit and R. Haldar, “Effects of Thermal Radiation on MHD Viscous Fluid Flow and Heat Transfer over Nonlinear Shrinking Porous Sheet,” Appl. Math. Mech. 32, 677–688 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Bhattacharyya and G. C. Layek, “Effects of Suction/Blowing on Steady Boundary Layer Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet with Thermal Radiation,” Int. J. Heat Mass Transfer 54, 302–307 (2011).

    Article  MATH  Google Scholar 

  33. J. Peddison and R. P. McNitt, “Boundary Layer Theory for Micropolar Fluid,” Recent Adv. Eng. Sci. 5, 405–426 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Das.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 4, pp. 125–135, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Sarkar, A. Effect of melting on an MHD micropolar fluid flow toward a shrinking sheet with thermal radiation. J Appl Mech Tech Phy 57, 681–689 (2016). https://doi.org/10.1134/S002189441604012X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189441604012X

Keywords

Navigation