Skip to main content
Log in

Temperature–strain rate deformation conditions of aluminum alloys

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents the results of an experimental study of the deformation and structural parameters of 1561 anisotropic alloy. It has been found that the lowest anisotropy factor corresponds to the formation of an ultrafine-grained equiaxed structure under temperature–strain rate conditions of superplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Rudskoy and Ya. I. Rudaev, Mechanics of Dynamic Superplasticity of Aluminum Alloys (Nauka, St. Peterburg, 2009) [in Russian].

    Google Scholar 

  2. O. A. Kaibyshev, Superplasticity of Commercial Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  3. A. A. Presnyakov and U. K. Duisenaliev, Concept of Superplastic Flow of Metals and Alloys (Signet-Print, Alma-Ata, 2006) [in Russian].

    Google Scholar 

  4. A. I. Olemskoi and A. A. Katsnel’son, Synergetics of Condensed Matter (URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  5. D. A. Kitaeva and Ya. I. Rudaev, “Synergetic Conceptions in Mechanics of Dynamic Superplasticity,” Nauch. Tekh. Vedom. St.-Peter. Gos. Politekhn. Univ., No. 4-1, 274–283 (2013).

    Google Scholar 

  6. F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials (Addison Wesley, Reading, 1966).

    Google Scholar 

  7. Yu. M. Vainblat and N. A. Sharshagin, “Dynamic Recrystallization of Aluminum Alloys,” Tsvet. Metally 2, 67–70 (1984).

    Google Scholar 

  8. Sh. T. Pazylov and V. A. Panyaev, “Deformation of Aluminum Alloys in the State of Recrystallization Superplasticity,” in Durability of Materials and Structures (Frunze Polytech. Inst., Frunze, 1987), pp. 87–98 [in Russian].

    Google Scholar 

  9. Yu. S. Zolotarevskii, V. A. Panyaev, Ya.I. Rudaev, et al., “Superplasticity of Some Aluminum Alloys,” Sudostroit. Prom., Ser. Materialoved., No. 16, 21–26 (1990).

    Google Scholar 

  10. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  11. N. V. Zhdanov, V. A. Panyaev, Ya. I. Rudaev, and D. I. Chashnikov, “Temperature–Strain Rate Deformation of 1561 Cast Aluminum Alloy,” Sudostroit. Prom. Ser. Materialoved., No. 15, 21–26 (1990).

    Google Scholar 

  12. N. H. Barakhtina, Yu. S. Zolotarevskii, Ya.I. Rudaev, et al., “Optimum Temperature–Strain Rate Parameters of Hot Rolling of Sheets of AMg61 (1561) Cast Aluminum Alloy,” Vopr. Mater., Nos. 19/20, 72–79 (1992).

    Google Scholar 

  13. Sh. T. Pazylov, N. A. Omorov, and Ya. I. Rudaev, “On the Deformation Anisotropy of Aluminum Alloys,” Vestn. Tambov. Univ. 15 (3), 974–975 (2010).

    Google Scholar 

  14. R. A. Adamesku, E. A. Mityushov, L. L. Mityushova, and M. V. Frolova, “Method of Calculating the Normal Plastic Anisotropy of Metals of the Cubic System,” Metally, No. 1, 173–179 (1990).

    Google Scholar 

  15. V. S. Zolotorevskii, Structure and Strength of Cast Aluminum Alloys (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  16. V. A. Kuneev, Sh. T. Pazylov, Ya. I. Rudaev, and D. I. Chashnikov, “Technology of Dynamic Superplasticity,” Probl. Mashionostr. Nadezh. Mashin, No. 6, 62–70 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kitaeva.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 2, pp. 182–189, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitaeva, D.A., Pazylov, S.T. & Rudaev, Y.I. Temperature–strain rate deformation conditions of aluminum alloys. J Appl Mech Tech Phy 57, 352–358 (2016). https://doi.org/10.1134/S002189441602019X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189441602019X

Keywords

Navigation