Skip to main content
Log in

Non-Fourier heat conduction in an exponentially graded slab

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The present article investigates one-dimensional non-Fourier heat conduction in a functionally graded material by using the differential transformation method. The studied geometry is a finite functionally graded slab, which is initially at a uniform temperature and suddenly experiences a temperature rise at one side, while the other side is kept insulated. A general non-Fourier heat transfer equation related to the functionally graded slab is derived. The problem is solved in the Laplace domain analytically, and the final results in the time domain are obtained by using numerical inversion of the Laplace transform. The obtained results are compared with the exact solution to verify the accuracy of the proposed method, which shows excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh, Fundamentals of Functionally Graded Materials, Ed. by S. Suresh and S. A. Mortensen (Inst. Materials, IOM Comm. Ltd, London, 1998).

  2. Z-H. Jin and R. C. Batra, “Stress Intensity Relaxation at the Tip of an Edge Crack in a Functionally Graded Material Subjected to a Thermal Shock,” J. Thermal Stresses 19, 317–339 (1996).

    Article  Google Scholar 

  3. M. Tanaka, T. Matsumoto, and Y. Suda, “A Dual Reciprocity Boundary Element Method Applied to the Steady-State Heat Conduction Problem of Functionally Gradient Materials,” in Proc. of Japan National Symp. on Boundary Element Method (2000), Vol. 17, pp. 11–16.

    Google Scholar 

  4. L. J. Gray, T. Kaplan, J. D. Richardson, and G. H. Paulino, “Green’s Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction,” J. Appl. Mech. 70, 543–549 (2003).

    Article  ADS  MATH  Google Scholar 

  5. A. Sutradhar, G. H. Paulino, and L. J. Gray, “Transient Heat Conduction in Homogeneous and Nonhomogeneous Materials by the Laplace Transform Galerkin Boundary Element Method,” Eng. Anal. Boundary Elements 26, 119–132 (2002).

    Article  MATH  Google Scholar 

  6. A. Sutradhar and G. H. Paulino, “A Simple Boundary Element Method for Problems of Potential in Non-Homogeneous Media,” Int. J. Numer. Methods Eng. 60, 2203–2230 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Sladek, V. Sladek, and Ch. Zhang, “Heat Transient Heat Conduction Analysis in Functionally Graded Materials by the Meshless Local Boundary Integral Equation Method,” Comput. Mater. Sci. 28, 494–504 (2003).

    Article  Google Scholar 

  8. J. Sladek, V. Sladek, J. Krivacek, and Ch. Zhang, “Local BIEM for Transient Heat Conduction Analysis in 3-D Axisymmetric Functionally Graded Solids,” Comput. Mech. 32, 169–176 (2003).

    Article  MATH  Google Scholar 

  9. J. Sladek, V. Sladek, and Ch. Zhang, “A Local BIEM for Analysis of Transient Heat Conduction with Nonlinear Source Terms in FGMs,” Eng. Anal. Boundary Elements 28, 1–11 (2004).

    Article  MATH  Google Scholar 

  10. L. F. Qian and Batra, “Three-Dimensional Transient Heat Conduction in a Functionally Graded Thick Plate with a Higher-Order Plate Theory and a Meshless Local Petrov–Galerkin Method,” Comput. Mech. 35, 214–226 (2005).

    Article  MATH  Google Scholar 

  11. C. Cattaneo, “A Form of Heat Conduction which Eliminates the Paradox of Instantaneous Propagation,” Compte Rendus. 247, 431–433 (1958).

    MathSciNet  Google Scholar 

  12. P. Vernotte, “Some Possible Complications in the Phenomena of Thermal Conduction,” Compte Rendus. 252, 2190–2191 (1961).

    MathSciNet  Google Scholar 

  13. M. N. Ozisik and D. Y. Tzou, “On the Wave Theory in Heat Conduction,” J. Heat Transfer 116, 526–535 (1986).

    Article  Google Scholar 

  14. T. M. Chen, “Numerical Solution of Hyperbolic Heat Conduction in Thin Surface Layers,” Int. J. Heat Mass Transfer 50, 4424–4429 (2007).

    Article  MATH  Google Scholar 

  15. Z. M. Tan and W. J. Yang, “Propagation of Thermal Waves in Transient Heat Conduction in a Thin Film,” J. Franklin Inst. 336, 185–197 (1999).

    Article  MATH  Google Scholar 

  16. Z. M. Tan and W. J. Yang, “Heat Transfer During Asymmetrical Collision of Thermal Waves in a Thin Film,” Int. J. Heat Mass Transfer 40, 3999–4006 (1997).

    Article  MATH  Google Scholar 

  17. M. Lewandowska and L. Malinowski, “An Analytical Solution of the Hyperbolic Heat Conduction Equation for the Case of a Finite Medium Symmetrically Heated on Both Sides,” Int. Comm. Heat Mass Transfer 33, 61–69 (2006).

    Article  Google Scholar 

  18. A. Moosaie, “Non-Fourier Heat Conduction in a Finite Medium Subjected to Arbitrary Periodic Surface Disturbance,” Int. Comm. Heat Mass Transfer 34, 996–1002 (2007).

    Article  Google Scholar 

  19. W. Kaminski, “Hyperbolic Heat Conduction Equation for Material with a Non-Homogeneous Inner Structure,” J. Heat Transfer 112, 555–560 (1990).

    Article  Google Scholar 

  20. M. A. Al-Nimr and M. Naji, “The Hyperbolic Heat Conduction Equation in an Anisotropic Material,” Int. J. Thermophys. 21, 281–287 (2000).

    Article  Google Scholar 

  21. M. H. Babaei and Z. T. Chen, “Hyperbolic Heat Conduction in a Functionally Graded Hollow Sphere,” Int. J. Thermophys. 29, 1457–1469 (2008).

    Article  ADS  Google Scholar 

  22. I. Keles and C. Conker, “Transient Hyperbolic Heat Conduction in Thick-Walled FGM Cylinders and Spheres with Exponentially-Varying Properties,” Europ. J. Mech. A. Solids 30, 449–455 (2011).

    Article  ADS  MATH  Google Scholar 

  23. M. R. Raveshi, S. Amiri, and A. Keshavarz, “Analysis of One-Dimensional Hyperbolic Heat Conduction in a Functionally Graded Thin Plate,” in Proc. ASME/JSME of the 8th Thermal Engineering Joint Conf., Honolulu, Hawaii (USA), March 13–17, 2011, pp. T10035-T10035-7.

    Google Scholar 

  24. D. E. Glass, N. Ozisik, D. S. McRae, and B. Vick, “On the Numerical Solution of Hyperbolic Heat Conduction,” Numer. Heat Transfer 8, 497–504 (1985).

    Article  ADS  Google Scholar 

  25. K. K. Tamma and S. B. Railkar, “Specially Tailored Transfinite-Element Formulations for Hyperbolic Heat Conduction Involving Non-Fourier Effects,” Numer. Heat Transfer, Part B: Fundamentals: Int. J. Comput. Methodol. 15, 211–226 (1989).

    Article  ADS  Google Scholar 

  26. K. K. Tamma and J. F. D’Costa, “Transient Modeling Analysis of Hyperbolic Heat Conduction Problems Employing Mixed Implicit Explicit Method,” Numer. Heat Transfer, Part B: Fundamentals: Int. J. Comput. Methodol. 19, 49–68 (1991).

    Article  ADS  Google Scholar 

  27. H. Q. Yang, “Characteristics-Based, High-Order Accurate and Non Oscillatory Numerical Method for Hyperbolic Heat Conduction,” Numer. Heat Transfer, Part B: Fundamentals: Int. J. Comput. Methodol. 18, 221–241 (1990).

    Article  ADS  MATH  Google Scholar 

  28. J. K. Zhou, Differential Transformation Method and its Application for Electrical Circuits (Huazhong Univ. Press, Wuhan, 1986).

    Google Scholar 

  29. A. A. Joneidi, D. D. Ganji, and M. Babaelahi, “Differential Transformation Method to Determine Fin Efficiency of Convective Straight Fins with Temperature Dependent Thermal Conductivity,” Int. Comm. Heat Mass Transfer 36 (7), 757–762 (2009).

    Article  Google Scholar 

  30. H. Yaghoobi and M. Torabi, “The Application of Differential Transformation Method to Nonlinear Equations Arising in Heat Transfer,” Int. Comm. Heat Mass Transfer 38, 815–820 (2011).

    Article  Google Scholar 

  31. S. Sadri and M. Babaelahi, “Analysis of a Laminar Boundary Layer Flow Over a Flat Plate with Injection or Suction,” J. Appl. Mech. Tech. Phys. 54 (1), 59–67 (2013).

    Article  ADS  MATH  Google Scholar 

  32. M. M. Rashidi and E. Erfani, “New Analytical Method for Solving Burgers’ and Nonlinear Heat Transfer Equations and Comparison with HAM,” Comput. Phys. Comm. 180 (9), 1539–1544 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Sadri, M. R. Raveshi, and S. Amiri, “Efficiency Analysis of Straight Fin with Variable Heat Transfer Coefficient and Thermal Conductivity,” J. Mech. Sci. Technol. 26, 1283–1290 (2012).

    Article  Google Scholar 

  34. M. Babaelahi and M. R. Raveshi, “Analytical Efficiency Analysis of Aerospace Radiating Fin,” J. Mech. Eng. Sci. 228 (17), 3133–3140 (2014); DOI: 10.1177/0954406214526963.

    Article  Google Scholar 

  35. M. Idrees and S. Haq, Optimal Homotopy Asymptotic Method: OHAM Verses HAM, HPM, LAP (LAMBERT Acad. Publ., 2012).

    Google Scholar 

  36. N. Tutuncu and M. Ozturk, “Exact Solutions for Stresses in Functionally Graded Pressure Vessels,” Composites, Part B: Engineering 32, 683–686 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Raveshi.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 2, pp. 152–163, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raveshi, M.R. Non-Fourier heat conduction in an exponentially graded slab. J Appl Mech Tech Phy 57, 326–336 (2016). https://doi.org/10.1134/S0021894416020164

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416020164

Keywords

Navigation