Skip to main content
Log in

Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Fair, “The Past, Present and Future of Electromagnetics Launch Technology and the IEEE International EML Symposia,” IEEE Trans. Plasma Sci. 41 (5), 1024–1027 (2013).

    Article  ADS  Google Scholar 

  2. I. R. McNab, “Large-Scale Pulsed Power Opportunities and Challenges,” IEEE Trans. Plasma Sci. 42 (5), 1118–1127 (2014).

    Article  ADS  Google Scholar 

  3. G. A. Shvetsov, V. M. Titov, Yu. A. Bashkatov, et al., “Investigation of a Railgun for Acceleration of Solid Particles Fed by an Explosive MHD-Generator,” in Ultrahigh Magnetic Fields. Physics. Equipment. Application, Proc. 3rd Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, Novosibirsk, 13–17 June, 1983 (Nauka, Moscow, 1984), pp. 177–182.

    Google Scholar 

  4. Harada Nob, “Space Application of Non-Equilibrium MHD Generator,” in Proc. of the 2nd Int. Workshop on Magnetoplasma Aerodynamics in Aerospace Applications, Moscow, 5–7 April, 2000 (Inst. High Temperatures, Russian Acad. of Sci., 2000), pp. 325–329.

    Google Scholar 

  5. R. L. Ellis, J. C. Poynor, B. T. McGlasson, A. N. Smith, “Influence of Bore and Rail Geometry on an Electromagnetic Naval Railgun System,” IEEE Trans. Magn. 41 (1), 182–187 (2005).

    Article  ADS  Google Scholar 

  6. Zizhou Su, Tao Zhang, Honghai Zhang, et al., “Desing and Simulation of a Large Muzzle Kinetic Energy Railgun,” IEEE Trans. Plasma Sci. 41 (5), 1416–1420 (2013).

    Article  ADS  Google Scholar 

  7. S. V. Sinyaev, V. V. Burkin, and E. Yu. Pimonov, “Ways to Develop a Rapid Fire Electrodynamic Launcher: Results of Experimental and Theoretical Studies,” in Modern Methods of Designing and Testing Rocket and Missile Artillery Ordnance: Proc. Scientific Conf. of the Volga Region RARAN Center [Inst. of Experimental. Physics (VNIIEF), Sarov, 2000], pp. 507–512.

  8. M. Schneider, M. Wötzel, and W. Wenning, “The ISL Rapid Fire Railgun Project RAFIR A. Pt 2. First Results,” IEEE Trans. Magn. 45 (1), 448–452 (2009).

    Article  ADS  Google Scholar 

  9. Ch. Schupper, F. Alonahabi, and M. Schneider, “Electromechanical Aspects of Reliable Loading Procedures for Multishot Railguns,” IEEE Trans. Plasma Sci. 41 (5), 1387–1391 (2013).

    Article  ADS  Google Scholar 

  10. G. Vincent and St. Hundertmark, “Using the Hexagonal Segmented Railgun in Multishot Mode with Three Projectiles,” IEEE Trans. Plasma Sci. 41 (5), 1431–1435 (2013).

    Article  ADS  Google Scholar 

  11. J. Gallant, T. Vancaeyzeele, B. Luawens, et al., “Design Consideration for an Electromagnetic Railgun Firing Intelligent Bursts to be Used Against Anti-Ship Missiles,” IEEE Trans. Plasma Sci. 43 (5), 1179–1184 (2015).

    Article  ADS  Google Scholar 

  12. T. Mehlhorn, “National Security Research in Plasma Physics and Pulsed Power: Past, Present and Future,” IEEE Trans. Plasma Sci. 42 (5), 1088–1117 (2014).

    Article  ADS  Google Scholar 

  13. Annual Report. Naval Research Laboratory. Plasma Physics Division (2013), pp. 1–80; wwwppdnrlnavymil.

  14. R. J. Rosa, Magnetohydrodynamic Energy Conversion (McGraw Hill, 1963).

    Google Scholar 

  15. E. P. Velikhov, O. G. Matveenko, V. P. Panchenko, et al., “Solid Propellant Fueled Sakhalin Pulsed MHD Generator with an Electrical Power of 500 MW,” Dokl. Ross. Akad. Nauk 370, 617–622 (2000).

    Google Scholar 

  16. E. P. Velikhov, V. D. Pismenny, O. G. Matveenko, et al., “Pulsed MHD Power System Sakhalin—The World Largest Solid Propellant Fueled MHD Generator of 500 MWe Electric Power Output,” in Proc. of the 13th Intern. Conf. on Magnetohydrodynamics Power Generation and High Temperature Technologies, Beijing (China), 12–15 Oct., 1999 (Beijing, 1999), Vol. 2, pp. 387–398.

    Google Scholar 

  17. Y. Y. Babakov, A. V. Plekhanov, and V. B. Zheleznyi, “Range and Railgun Development Results at LS&PA “SOYUZ,” IEEE Trans. Magn. 31 (1), 259–263 (1995).

    Article  ADS  Google Scholar 

  18. D. A. Fulghum, “Russian Power Design to Drive US Weapons,” Aviat. Week Space Technol (April 10, 1995), p. 54.

    Google Scholar 

  19. V. M. Batenin, V. A. Biturin, G. S. Ivanov, et al., “Advanced Reusable Space Transportation System with Horizontal Launch of Air-Space Plane,” in Proc. of the 2nd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, Moscow, 5–7 April, 2000 (Inst. High Temp., Russian Acad. of Sci., 2000), pp. 318–325.

    Google Scholar 

  20. V. V. Breev, A. V. Gubarev, and V. P. Panchenko, Supersonic MHD Generators (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  21. A. E. Poltanov, A. K. Kondratenko, A. P. Glinov, and V. N. Ryndin, “Multi-Turn Railguns: The Concept Analysis and Experiments,” IEEE Trans. Magn. 37 (1), 457–461 (2001).

    Article  ADS  Google Scholar 

  22. V. G. Butov, V. M. Galkin, V. M. Golovizin, et al., “Numerical Simulation of Dimensional Two-Phase Flows in Supersonic MHD Generators,” Preprint No. 5276/16 (Kurchatov Institute of Atomic Energy, Moscow, 1990) [in Russian].

    Google Scholar 

  23. V. P. Panchenko, “Preliminary Analysis of the Sakhalin World Largest Pulsed MHD Generator,” in Proc. of the 4th Int. Workshop on Magnetoplasma Aerodynamics in Aerospace Applications, Moscow, April 9–11, 2002 (Inst. High Temp., Russian Acad. of Sci., 2002), pp. 322–331.

    Google Scholar 

  24. H. Knoepfel, Pulsed High Magnetic Fields (North-Holland, Amsterdam–London, 1970).

    Google Scholar 

  25. S. V. Sinyaev, “Method for Calculating the Power and Electromagnetic Parameters of Complex Systems of Conductors in Problems of Electrodynamics,” in Proc. 3rd Sib. Congress on Industrial and Applied Mathematics, Novosibirsk, 22–27 June, 1998 (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1998), Part 3, p. 40.

    Google Scholar 

  26. R. T. Honjo and R. M. Del Vechio, “A Program to Compute Magnetic Fields and Inductances Due to Solid Rectangular Conductors Arbitrarily Positioned in Space,” IEEE Trans. Magn. 22 (5), 1532–1535 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Afonin.

Additional information

Original Russian Text © A.G. Afonin, V.G. Butov, V.P. Panchenko, S.V. Sinyaev, V.A. Solonenko, G.A. Shvetsov, A.A. Yakushev.

Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 5, pp. 91–101, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, A.G., Butov, V.G., Panchenko, V.P. et al. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator. J Appl Mech Tech Phy 56, 813–822 (2015). https://doi.org/10.1134/S0021894415050077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415050077

Keywords

Navigation