Skip to main content
Log in

Engineering modeling of the laminar–turbulent transition: Achievements and problems (Review)

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Currently available methods of computing the laminar–turbulent transition (LTT), including methods used in gas-dynamic software packages, are analyzed from the viewpoint of LTT simulation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Numerical Simulation of Unsteady Flows and Transition to Turbulence, Ed. by O. Pironneau, W. Rodi, I. L. Ryhming, et al. (Cambridge Univ. Press, Cambridge, 1992).

  2. M. B. Davis, H. Reed, H. Youngren, et al., “Transition Prediction Method Review Summary for the Rapid Assessment Tool for Transition Prediction,” Technical Report No. 2005–3130 (AFRL-VA-WP, Fort Worth, 2005).

    Google Scholar 

  3. A. V. Boiko, A. V. Dovgal, G. R. Grek, and V. V. Kozlov, Physics of Transitional Shear Flows (Springer-Verlag, Berlin–Heidelberg, 2011).

    Google Scholar 

  4. M. R. Malik, “Boundary-Layer Transition Prediction Toolkit,” AIAA Paper No. 97-1904 (Hampton, 1997).

    Google Scholar 

  5. S. Hein, “Nonlinear Nonlocal Transition Analysis—Code Development and Results,” in Recent Results in Laminar–Turbulent Transition: Selected Numerical and Experimental Contributions from the DFG Priority Programme “Transition” in Germany, Ed. by S. Wagner, M. Kloker, and U. Rist (Springer-Verlag, Berlin–Heidelberg, 2004), pp. 123–134.

    Chapter  Google Scholar 

  6. B. Y. Zanin, “Transition at Natural Conditions and Comparison with the Results of Wind Tunnel Studies,” in Proc. of the Symp. Laminar–Turbulent Transition, Novosibirsk, 9–13, July 1984, Ed. by V. V. Kozlov (Springer-Verlag, Berlin–Heidelberg, 1985), pp. 541–546.

    Google Scholar 

  7. A. A. Hall and G. S. Hislop, Experiments on the Transition of the Laminar Boundary Layer on a Flat Plate: Reports and Memoranda 1843 (Aeronaut. Res. Committee, London, 1938).

    Google Scholar 

  8. G. B. Schubauer and H. K. Skramstad “Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate,” NACA Report No. 909 (Washington, 1948).

    Google Scholar 

  9. R. E. Mayle, “The Role of Laminar–Turbulent Transition in Gas Turbine Engines,” J. Turbomachinery 113 (4), 509–536 (1991).

    Article  Google Scholar 

  10. R. E. Mayle and A. Schulz, “The Path to Predicting Bypass Transition,” J. Turbomachinery 119 (3), 405–411 (1997).

    Article  Google Scholar 

  11. R. E. Walraevens and N. A. Cumpsty, “Leading Edge Separation Bubbles on Turbomachine Blades,” J. Turbomachinery 117 (1), 115–125 (1995).

    Article  Google Scholar 

  12. L. Tain and N. A. Cumpsty, “Compressor Blade Leading Edges in Subsonic Compressible Flow,” J. Mech. Eng. Sci. 214 (1), 221–242 (2000).

    Article  Google Scholar 

  13. P. A. Durbin, R. G. Jacobs, and X. Wu, “DNS of Bypass Transition,” in Closure Strategies for Turbulent and Transitional Flows, Ed. by B. E. Launder and N. D. Sandham (Cambridge Univ. Press, Cambridge, 2002), pp. 449–463.

  14. Y. Dong and N. A. Cumpsty, “Compressor Blade Boundary Layers. Pt 1. Test Facility and Measurements with no Incident Wakes,” J. Turbomachinery 112 (2), 222–230 (1990).

    Article  Google Scholar 

  15. R. J. Howell, O. N. Ramesh, H. P. Hodson, et al., “High Lift and Aft-Loaded Profiles for Low-Pressure Turbines,” J. Turbomachinery 123 (2), 181–188 (2001).

    Article  Google Scholar 

  16. R. H. Radeztsky, M. S. Reibert, and W. S. Saric, “Effect of Isolated Micron-Sized Roughness on Transition in Swept-Wing Flows,” AIAA J. 37 (11), 1370–1377 (1999).

    Article  ADS  Google Scholar 

  17. S. Dhawan and R. Narasimha, “Some Properties of Boundary Layer Flow During the Transition from Laminar to Turbulent Motion,” J. Fluid Mech. 3 (4), 418–436 (1958).

    Article  MATH  ADS  Google Scholar 

  18. J. Steelant and E. Dick, “Modelling of Bypass Transition with Conditioned Navier–Stokes Equations Coupled to an Intermittency Transport Equation,” Int. J. Numer. Methods Fluids 23 (3), 193–220 (1996).

    Article  MATH  ADS  Google Scholar 

  19. R. Narasimha, “A Note on Certain Turbulent Spot and Burst Frequencies,” Report No. 78 FM 10 (Indian Inst. Sci., Bangalore, 1978).

    Google Scholar 

  20. K. K. Chen and N. A. Thyson, “Extension of Emmons’ Spot Theory to Flows on Blunt Bodies,” AIAA J. 9 (5), 821–825 (1971).

    Article  ADS  Google Scholar 

  21. G. J. Walker, “Transitional Flow on Axial Turbomachine Blading,” AIAA J. 27 (5), 595–602 (1989).

    Article  ADS  Google Scholar 

  22. P. G. Huang and T. J. Coakley, “An Implicit Navier–Stokes Code for Turbulent Flow Modeling” AIAA Paper No. 92-0547 (Hampton, 1992).

    Google Scholar 

  23. F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J. 32 (8), 1598–1605 (1994).

    Article  ADS  Google Scholar 

  24. P. G. Huang and G. Xiong, “Transition and Turbulence Modeling of Low Pressure Turbine Flows,” AIAA Paper No. 98-0339 (Hampton, 1998).

    Google Scholar 

  25. C. Grabe and A. Krumbein, “Extension of the Ret Model for Prediction of Crossflow Transition,” AIAA Paper No. 2014-1269 (Hampton, 2014).

    Google Scholar 

  26. J. R. Cho and M. K. Chung, “A k–e Equation Turbulence Model,” J. Fluid Mech. 237, 301–322 (1992).

    Article  MATH  ADS  Google Scholar 

  27. A. M. Savill, “Further Progress in the Turbulence Modeling of By-Pass Transition,” in Proc. of the 2nd Int. Symp. on Engineering Turbulence Modeling and Measurements, Florence (Italy), 31 May to 2 June, 1993, Ed. by W. Rodi and F. Martelli (Elsevier, Amsterdam, 1993), pp. 583–592.

    Google Scholar 

  28. J. Steelant and E. Dick, “Modeling of Laminar–Turbulent Transition for High Freestream Turbulence,” J. Fluids Eng. 123 (1), 22–30 (2001).

    Article  Google Scholar 

  29. J. Vicedo, S. Vilmin, W. N. Dawes, and A. M. Savill, “Intermittency Transport Modeling of Separated Flow Transition,” J. Turbomachinery 126 (3), 424–431 (2004).

    Article  Google Scholar 

  30. R. B. Langtry and F. R. Menter, “Transition Modeling for General CFD Applications in Aeronautics,” AIAA Paper No. 2005-522 (Hampton, 2005).

    Google Scholar 

  31. F. R. Menter, R. B. Langtry, and S. Völker, “Transition Modelling for General Purpose CFD Codes,” Flow, Turbulence Combustion 77 (1–4), 277–303 (2006).

    Article  MATH  Google Scholar 

  32. D. Arnal, “Laminar–Turbulent Transition Problems in Supersonic and Hypersonic Flows,” in Special Course on Aerothermodynamics of Hypersonic Vehicles (AGARD, Neuilly-sur-Seine, 1989), pp. 8.1–8.45.

    Google Scholar 

  33. H. W. Liepman, “Investigation of Boundary Layer Transition on Concave Walls,” NACA Report No. NW-87 (Washington, 1945).

    Google Scholar 

  34. L. M. Mack, “A Numerical Method for the Prediction of High-Speed Boundary-Layer Transition Using Linear Theory,” in Aerodynamic Analyses Requiring Advanced Computers, Proc. of the Conf., Virginia, March 4–6, 1975 (NASA, Washington, 1975), Part 1, pp. 101–123.

    Google Scholar 

  35. M. R. Malik and S. A. Orszag, “Comparison of Methods for Prediction of Transition by Stability Analysis,” AIAA J. 18 (12), 1485–1489 (1980).

    Article  ADS  Google Scholar 

  36. O. M. Bushnell, M. R. Malik, and W. O. Harvey, “Transition Prediction in External Flows Via Linear Stability Theory,” in Transsonicum III, Proc. of the IUTAM Symp., Göttingen, May 24–27, 1988, Ed. by J. Zierep and H. Oertel (Jr.) (Springer-Verlag, Berlin–Heidelberg, 1989), pp. 225–242.

    Chapter  Google Scholar 

  37. D. Arnal and J. P. Archambaud, “Laminar–Turbulent Transition Control: NLF, LFC, HLFC,” in Proc. of the RTO-EN-AVT-151—Advances in Laminar–Turbulent Transition Modelling, Genèse, Belgium, June 9–12, 2008 (Neuilly-sur-Seine Cedex, 2008), pp. 15.1–15.22.

    Google Scholar 

  38. B. J. Abu-Ghannam and R. Shaw, “Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History,” J. Mech. Eng. Sci. 22 (5), 213–228 (1980).

    Article  Google Scholar 

  39. N. A. Jaffe, T. T. Okamura, and A. M. O. Smith, “Determination of Spatial Amplification Factors and Their Application to Predicting Transition,” AIAA J. 8 (2), 301–308 (1970).

    Article  MATH  ADS  Google Scholar 

  40. R. Michel, D. Arnal, and E. Coustols, “Stability Calculations and Transition Criteria on Two- and Three- Dimensional Flows,” in Laminar–Turbulent Transition, Proc. of the IUTAM Symp., Novosibirsk, July 9–13, 1984, Ed. by V. V. Kozlov (Springer-Verlag, Berlin–Heidelberg, 1985), pp. 455–461.

    Google Scholar 

  41. H. B. Squire, “On the Stability for Three-Dimensional Disturbances of Viscous Fluid Flow between Parallel Walls,” Proc. Roy. Soc. London, Ser. A. Math., Phys. Eng. Sci. 142 (847), 621–628 (1933).

    Article  MATH  ADS  Google Scholar 

  42. M. Drela and M. B. Giles, “Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils,” AIAA J. 25 (10), 1347–1355 (1987).

    Article  MATH  ADS  Google Scholar 

  43. M. Drela, “Implicit Implementation of the Full en Transition Criterion,” AIAA Paper No. 2003-4066 (Hampton, 2003).

    Google Scholar 

  44. D. F. Fisher and N. S. Dougherty, “In-Flight Transition Measurement on a 10 Cone at Mach Numbers from 0.5 to 2.0,” NASA Paper No. 1971 (Washington, 1982).

    Google Scholar 

  45. P. Sturdza, “An Aerodynamic Design Method for Supersonic Natural Laminar Flow Aircraft,” Ph. D. Thesis (Stanford Univ., 2003).

    Google Scholar 

  46. I. J. Lyttle, H. L. Reed, A. N. Shiplyuk, et al., “Numerical-Experimental Comparisons of Second-Mode Behavior for Blunted Cones,” AIAA J. 43 (8), 1734–1743 (2005).

    Article  ADS  Google Scholar 

  47. L. M. Mack, “Boundary-Layer Linear Stability Theory,” AGARD Report No. 709 (Neuilly-sur-Seine, 1984), pp. 3.1–3.81.

    Google Scholar 

  48. C. S. Wells (Jr.), “Effects of Free Stream Turbulence on Boundary-Layer Transition,” AIAA J. 5 (1), 172–174 (1967).

    Article  ADS  Google Scholar 

  49. J. G. Spangler and C. S. Wells, “Effects of Freestream Disturbances on Boundary-Layer Transition,” AIAA J. 6 (3), 543–545 (1968).

    Article  ADS  Google Scholar 

  50. D. J. Hall and J. C. Gibbings, “Influence of Stream Turbulence and Pressure Gradient upon Boundary Layer Transition,” J. Mech. Eng. Sci. 4, 134–146 (1972).

    Article  Google Scholar 

  51. J. L. Van Ingen, “Transition, Pressure Gradient, Suction, Separation and Stability Theory,” in AGARD-CP-224 Laminar–Turbulent Transition, Ed. by J. L. Van Ingen (AGARD, Neuilly-sur-Seine, 1977), pp. 20.1–20.15.

    Google Scholar 

  52. A. V. Boiko, Yu. M. Nechepurenko, R. N. Zhuchkov, and A. S. Kozelko, “Laminar–Turbulent Transition Prediction Module for LOGOS Package,” Teplofiz. Aeromekh. 21 (2), 201–220 (2014) [Thermophys. Aeromech. 21 (2), 191–210 (2014)].

    Google Scholar 

  53. A. V. Boiko, Y. M. Nechepurenko, I. V. Abalakin, and V. G. Bobkov, “Numerical Prediction of Laminar–Turbulent Transition on an Airfoil,” Russ. J. Numer. Anal. Math. Modelling. 29 (4), 205–218 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  54. H. W. Stock and W. Haase, “Navier–Stokes Airfoil Computations with eN Transition Prediction Including Transitional Flow Regions,” AIAA J. 38 (11), 2059–2066 (2000).

    Article  ADS  Google Scholar 

  55. K. J. A. Westin and R. Henkes, “Application of Turbulence Models to Bypass Transition,” J. Fluids Eng. 119 (4), 859–866 (1997).

    Article  Google Scholar 

  56. Y. B. Suzen, P. G. Huang, L. S. Hultgren, and D. E. Ashpis, “Predictions of Separated and Transitional Boundary Layers under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation,” J. Turbomachinery 125 (3), 455 (2003).

    Article  Google Scholar 

  57. F. R. Menter, T. Esch, and S. Kubacki, “Transition Modelling Based on Local Variables,” in Proc. of the 5th Int. Symp. on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, September 16–18, 2002, Ed. by W. Rodi and N. Fueyo (Elsevier, Amsterdam, 2002), pp. 555–564.

    Google Scholar 

  58. E. R. Van Driest and C. B. Blumer, “Boundary Layer Transition: Free-Stream Turbulence and Pressure Gradient Effects,” AIAA J. 1 (6), 1303–1306 (1963).

    Article  MATH  ADS  Google Scholar 

  59. D. K. Walters and J. H. Leylek, “A New Model for Boundary Layer Transition Using a Single-Point RANS Approach,” J. Turbomachinery 126 (1), 193–202 (2004).

    Article  Google Scholar 

  60. R. J. Vino, “A New Model for Free-Stream Turbulence Effects on Boundary Layers,” J. Turbomachinery 120 (3), 613–620 (1998).

    Article  Google Scholar 

  61. D. K. Walters and D. Cokljat, “A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow,” J. Fluids Eng. 130 (12), 121401-1–121401-14 (2008).

  62. R. B. Langtry, “A Correlation-Based Transition Model using Local Variables for Unstructured Parallelized CFD Codes,” Ph. D. Diss. (Stuttgart, 2006).

    Google Scholar 

  63. R. B. Langtry and F. R. Menter, “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA J. 47 (12), 2894–2906 (2009).

    Article  ADS  Google Scholar 

  64. P. R. Spalart and S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper No. 92-0439 (Hampton, 1992).

    Google Scholar 

  65. S. Medida, “Correlation-Based Transition Modeling for External Aerodynamic Flows,” Ph. D. Thesis (Univ. of Maryland, Maryland, 2014).

    Google Scholar 

  66. V. M. Molochnikov, N. I. Mikheev, and O. A. Dushina, “Simulation of Subsonic Flows with Separation Using the FLUENT Program Package: Software Applicability Study,” Teplofiz. Aeromekh. 16 (3), 387–394 (2009) [Thermophys. Aeromech. 16 (3), 367–374 (2009)].

    Google Scholar 

  67. R. L. Davis, J. E. Carter, and E. Reshotko, “Analysis of Transitional Separation Bubbles on Infinite Swept Wings,” AIAA J. 25 (3), 421–428 (1987).

    Article  ADS  Google Scholar 

  68. W. T. Simon and S. Qiu, K. Yuan, “Measurements in a Transitional Boundary Layer under Low-Pressure Turbine Airfoil Conditions,” CR 2000-209957 (NASA, Washington, 2000).

    Google Scholar 

  69. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1979).

    MATH  Google Scholar 

  70. K. Suluksna and E. Juntasaro, “Assessment of Intermittency Transport Equations for Modeling Transition in Boundary Layers Subjected to Freestream Turbulence,” Int. J. Heat Fluid Flow. 29 (1), 48–61 (2008).

    Article  Google Scholar 

  71. P. Malan, K. Suluksna, and E. Juntasaro, “Calibrating the Re Transition Model for Commercial CFD,” AIAA Paper No. 2009-1142 (Hampton, 2009).

    Google Scholar 

  72. K. Suluksna, P. Dechaumphai, and E. Juntasaro, “Correlations for Modeling Transitional Boundary Layers under Influences of Freestream Turbulence and Pressure Gradient,” Int. J. Heat Fluid Flow 30 (1), 66–75 (2009).

    Article  Google Scholar 

  73. E. Smirnov and A. Smirnovsky, “Turbine Vane Cascade Heat Transfer Predictions using a Modified Version of the Laminar–Turbulent Transition Model,” in Proc. of the Int. Symp. on Heat Transfer in Gas Turbine Systems, Antalya (Turkey), August 9–14, 2009 (Begell House, New York, 2009), Paper No. 12-EFHT.

    Google Scholar 

  74. W. Piotrowski, W. Elsner, and S. Drobniak, “Transition Prediction on Turbine Blade Profile with Intermittency Transport Equation,” J. Turbomachinery 132 (1), 011020-1–011020-1 (2010).

  75. C. Seyfert and A. Krumbein, “Comparison of a Local Correlation-Based Transition Model with an eN-Method for Transition Prediction,” in New Results in Numerical and Experimental Fluid Mechanics VIII: Contribut. to the 17th STAB/DGLR Symp., Berlin, Germany, November 9–10, 2010, Ed. by A. Dillmann, G. Heller, H.-P. Kreplin, et al. (Springer-Verlag, Berlin–Heidelberg, 2013), pp. 541–548.

    Chapter  Google Scholar 

  76. C. Seyfert and A. Krumbein, “Evaluation of a Correlation-Based Transition Model and Comparison with the eN Method,” J. Aircraft 49 (6), 1765–1773 (2012).

    Article  Google Scholar 

  77. C. Content and R. Houdeville, “Application of the Re Laminar–Turbulent TransitionModel in Navier–Stokes Computations,” AIAA Paper No. 2010-4445 (Hampton, 2010).

    Google Scholar 

  78. A. Benyahia, L. Castillon, and R. Houdeville, “Prediction of Separation-Induced Transition on High Lift Low Pressure Turbine Blade,” in Proc. ASME 2011 Turbo Expo: Turbine Tech. Conf. and Exposit., Vancouver (Canada), June 6–10, 2011 (Amer. Soc. Mech. Eng., 2011), Vol. 5. pp. 1835–1846.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Boiko.

Additional information

Original Russian Text © A.V. Boiko, S.V. Kirilovskiy, A.A. Maslov, T.V. Poplavskaya.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 5, pp. 30–49, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, A.V., Kirilovskiy, S.V., Maslov, A.A. et al. Engineering modeling of the laminar–turbulent transition: Achievements and problems (Review). J Appl Mech Tech Phy 56, 761–776 (2015). https://doi.org/10.1134/S002189441505003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189441505003X

Keywords

Navigation