Skip to main content
Log in

Effect of turbulence models on the submerged hydraulic jump simulation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This study presents a numerical investigation and prediction of the flow field in threedimensional submerged hydraulic jumps. The volume of fluid (VOF) method is used to simulate the free surface. The turbulent structure is simulated by using different turbulence models, such as the standard k–ε model, RNG k–ε model, realizable k–ε model, and Reynolds-stress model (RSM) closure schemes. The capabilities of the turbulence models are investigated with the standard wall functions and enhanced wall treatment methods. A comparison between the numerical and experimental results shows that the numerical model is adequate for predicting the flow pattern and free surface of submerged hydraulic jumps. The RNG k–ε turbulence model with the enhanced wall treatment method ensures the highest accuracy in the water surface simulation. Near the channel bed of a fully developed region, the RSM model with the enhanced wall treatment method shows better agreement with the experimental longitudinal velocity than the other turbulence models. The standard k–ε model predicts the longitudinal velocity more accurately than the RNG and realizable k–ε models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Long, P. M. Steffler, N. Rajaratnam, and P. Smy, “Structure of Flow in Hydraulic Jumps,” J. Hydraul. Res. 29 (2), 207–218 (1990).

    Article  Google Scholar 

  2. M. Liu, N. Rajaratnam, and D. Zhu, “Turbulence Structure of Hydraulic Jumps of Low Froude Numbers,” J. Hydraul. Eng. Proc. ASCE 130, 511–520 (2004).

    Article  Google Scholar 

  3. J. A. McCorquodale, “Hydraulic Jumps and Internal Flows,” in Encyclopedia of Fluid Mechanics, Ed. by N. P. Cheremisinoff (Gulf, Houston, 1986), Vol. 2, Chapter 6, pp. 120–173.

    Google Scholar 

  4. H. Rouse, T. T. Siao, and S. Nagaratnam, “Turbulence Characteristics of the Hydraulic Jumps,” J. Hydraul. Div. Proc. ASCE 84 (1), 1–30 (1958).

    Google Scholar 

  5. I. A. Svendsen, J. Veeramony, J. Bakunin, and J. T. Kirby, “The Flow in Weak Turbulent Hydraulic Jump,” J. Fluid Mech. 418, 25–57 (2000).

    Article  MATH  ADS  Google Scholar 

  6. N. S. G. Rao and N. Rajaratnam, “The Submerged Hydraulic Jump,” J. Hydraul. Div. Proc. ASCE 89 (HY1), 139–162 (1963).

    Google Scholar 

  7. N. Rajaratnam, “The Hydraulic Jump as a Wall Jet,” J. Hydraul. Div. Proc. ASCE 91 (5), 107–132 (1965).

    Google Scholar 

  8. S. Wu and N. Rajaratnam, “Free Jumps, Submerged Jumps and Wall Jets,” J. Hydraul. Res. 33 (2), 197–212 (1995).

    Article  Google Scholar 

  9. D. Long, P. M. Steffler, and N. Rajaratnam, “LDA Study of Flow Structure in Submerged Hydraulic Jumps,” J. Hydraul. Res. 28 (4), 437–460 (1990).

    Article  Google Scholar 

  10. I. Ohtsu, Y. Yasuda, and M. Ishikawa, “Submerged Hydraulic Jumps Below Abrupt Expansions,” J. Hydraul. Eng. Proc. ASCE 125 (5), 492–499 (1999).

    Article  Google Scholar 

  11. S. Dey and A. Sarkar, “Characteristics of Turbulent Flow in Submerged Jumps on Rough Beds,” J. Eng. Mech. Proc. ASCE 134 (1), 49–59 (2008).

    Article  Google Scholar 

  12. D. Long, P. M. Steffler, and N. Rajaratnam, “A Numerical Study of Submerged Hydraulic Jumps,” J. Hydraul. Res. 29 (3), 293–308 (1991).

    Article  Google Scholar 

  13. A. M. Gharangik and M. H. Chaudhry, “Numerical Model of Hydraulic Jump,” J. Hydraul. Eng. Proc. ASCE 117, 1195–1209 (1991).

    Article  Google Scholar 

  14. S. Chippada, B. Ramaswamy, and M. F. Wheeler, “Numerical Simulation of Hydraulic Jump,” Int. J. Numer. Methods Engng. 37, 1381–1397 (1994).

    Article  MATH  Google Scholar 

  15. F. Ma, Y. Hou, and P. Prinos, “Numerical Calculation of Submerged Hydraulic Jump,” J. Hydraul. Res. 39 (5), 1–11 (2002).

    MATH  Google Scholar 

  16. C. W. Hirt and B. D. Nicholls, “Volume of Fluid (VOF) Method for Dynamics of Free Boundaries,” J. Comput. Phys. 39, 201–221 (1981).

    Article  MATH  ADS  Google Scholar 

  17. M. A. Sarker and D. G. Rhodes, “PhysicalModeling and CFD Applied to Hydraulic Jumps,” Report of Cranfield Univ. (2002).

    Google Scholar 

  18. Q. Zhao, S. K. Misra, S. Svendsen, and I. Kirby, “Numerical Study of a Turbulent Hydraulic Jump,” in Proc. of 17th Eng. Mech. Conf. (Univ. of Delaware, New York, 2004).

    Google Scholar 

  19. A. Gonzalez and F. Bombardelli, “Two-Phase Flow Theory and Numerical Models for Hydraulic Jumps, Including Air Entrainment,” in Proc. of the 31st IAHR Congress (Seoul, Korea, 2005).

    Google Scholar 

  20. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974).

    Article  MATH  ADS  Google Scholar 

  21. H. C. Chen and V. C. Patel, “Near-Wall Turbulence Models for Complex Flows Including Separation,” AIAA J. 26 (6), 641–648 (1988).

    Article  ADS  Google Scholar 

  22. T. Jongen, “Simulation and Modeling of Turbulent Incompressible Flows,” Thesis Ph.D. (Lausanne, 1992).

    Google Scholar 

  23. B. Kader, “Temperature and Concentration Profiles in Fully Turbulent Boundary Layers,” Int. J.Heat Mass Transfer 24 (9), 1541–1544 (1981).

    Article  Google Scholar 

  24. M. Wolfstein, “The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient,” Int. J. Heat Mass Transfer 12, 301–318 (1969).

    Article  Google Scholar 

  25. T. H. Shih and J. L. Lumley, “Kolmogorov Behavior of Near-Wall Turbulence and its Application in Turbulence Modeling,” Int. J. Comput. Fluid Dyn. 1 (1), 43–56 (1993).

    Article  Google Scholar 

  26. H. D. Pasinato, “Some Results Based on Near-Wall Turbulence,” Int. J. Comput. Fluid Dyn. 14 (2), 159–169 (2000).

    Article  MATH  Google Scholar 

  27. J. Y. Kim, A. J. Ghajar, C. Tang, and G. L. Foutch, “Comparison of Near-Wall Treatment Methods for High Reynolds Number Backward-Facing Step Flow,” Int. J. Comput. Fluid Dyn. 19 (7), 493–500 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shekari.

Additional information

Original Russian Text © Y. Shekari, M. Javan, A. Eghbalzadeh.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 3, pp. 128–138, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekari, Y., Javan, M. & Eghbalzadeh, A. Effect of turbulence models on the submerged hydraulic jump simulation. J Appl Mech Tech Phy 56, 454–463 (2015). https://doi.org/10.1134/S0021894415030153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415030153

Keywords

Navigation