Skip to main content
Log in

Wave effects in collapsible biovessels

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Dispersion characteristics of wave processes in collapsible elastic biovessels with the biofluid flowing through them are presented. The possibility of the existence of fixed flow structures in the vessels is shown. The possibility of applying the results to the study of biological systems is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Fomin, V. N. Vetlutskii, et al., “Air Flow in the Human Nasal Cavity,” Prikl. Mekh. Tekh. Fiz. 51 (2), 107–115 (2010) [J. Appl. Mech. Tech. Phys. 51 (2), 233–240 (2010)].

    Google Scholar 

  2. A. E. Medvedev, V. I. Samsonov, and V. M. Fomin, “Rational Structure of Blood Vessels,” Prikl. Mekh. Tekh. Fiz. 47 (3), 24–30 (2006) [J. Appl. Mech. Tech. Phys. 47 (3), 324–329 (2006)].

    MATH  Google Scholar 

  3. V. N. Pilipchuk and I. G. Protsenko, “Model of a Distensible Tube Admitting Localized Waves,” Prikl. Mekh. Tekh. Fiz., No. 3, 126–131 (1987) [Appl. Mech. Tech. Phys., No. 3, 433–437 (1987)].

    Google Scholar 

  4. V. V. Boronoev and E. A. Trubacheev, “Evaluation of a Pulse Wave as a Physical Process,” Biomed. Radioelektron., No. 5, 15–18 (2008).

    Google Scholar 

  5. N. N. Kizilova, “Pulse Wave Reflection and Resonant Properties of Arterial Beds,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 129–139 (2003).

    MathSciNet  Google Scholar 

  6. V. B. Parashin and G. P. Itkin, Biomechanics of Blood Circulation (Moscow State University, Moscow, 2005) [in Russian].

    Google Scholar 

  7. S. A. Regirer, “Biomechanics: Well-Known and Little-Known Formulations of Problems,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 8–19 (1992).

    Google Scholar 

  8. C. Cancelli and T. J. Pedley, “A Separated-Flow Model for Collapsible-Tube Oscillations,” J. Fluid Mech. 157, 375–404 (1985).

    Article  ADS  Google Scholar 

  9. N. Gavriely, T. R. Shee, D. W. Cugell, and J. B. Grotberg, “Flutter in Flow-Limited Collapsible Tubes: A Mechanism for Generation of Wheezes,” J. Appl. Phys. 66 (5), 2251–2261 (1989).

    Google Scholar 

  10. B. N. Klochkov and E. A. Kuznetsova, “Nonlinearregimes of Variation of the Shape of a Collapsible Tube Containing a Flowing Fluid,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 46–55 (2000).

    Google Scholar 

  11. B. N. Klochkov, Yu. Yu. Eliseeva, and P. A. Shilyagin, “Propagation of Low-Frequency Waves in Biological Tissues and Vessels,” Akust. Zh. 55 (4/5), 506–515 (2009).

    Google Scholar 

  12. C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation (Oxford Medical, New York, 1978).

    MATH  Google Scholar 

  13. T. Pedley, The Fluid Mechanics of Large Blood Vessels (Cambridge University Press, 1980).

    Book  MATH  Google Scholar 

  14. Circulatory Physiology: The Physiology of the Vascular System (Manual in Physiology) (Nauka, Leningrad, 1984) [in Russian].

  15. Human Physiology, Ed. by R. F. Schmidt and G. Thews (Springer, 1983), Vol. 3.

  16. P. K. Chichagov, “Experimental Study of Mechanical Oscillations in the Venous Bed,” Mekh. Kompoz. Mater., No. 4, 733–735 (1979).

    Google Scholar 

  17. T. Ohhashi, T. Azuma, and M. Sakaguchi, “Active and Passive Mechanical Characteristics of Bovine Mesenteric Lymphatics,” Amer. J. Physiol. 239, H88–H95 (1980).

    Google Scholar 

  18. W. A. Conrad, “Pressure-Flow Relationships in Collapsible Tubes,” IEEE Trans. Biomed. Eng. 16 (4), 284–295 (1969).

    Article  Google Scholar 

  19. A. I. Katz, Y. Chen, and A. G. Moreno, “Flow Through a Collapsible Tube: Experimental Analysis and Mathematical Model,” Biophys. J. (1969).

    Google Scholar 

  20. A. Ur and M. Gordon, “Origin of Korotkoff Sounds,” Amer. J. Physiol. 218 (2), 524–529 (1970).

    MATH  Google Scholar 

  21. D. J. Griffiths, “Oscillations in the Outflow from a Collapsible Tube,” Med. Biol. Eng. Comput. 15 (4), 357–362 (1977).

    Article  Google Scholar 

  22. R. W. Brower and C. Scholten, “Experimental Evidence on the Mechanism for the Instability of Flow in Collapsible Vessels,” Med. Biol. Eng. 13 (6), 839–845 (1975).

    Article  Google Scholar 

  23. A. S. Vol’mir, Shells in Fluid and Gas Flows: Problems of Hydroelasticity (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  24. A. S. Vol’mir, Shells in Fluid and Gas Flows: Problems of Hydroelasticity (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  25. V. A. Berezovskii and N. N. Kolotilov, Biophysical Characteristics of Human Tissues: Handbook (Naukova Dumka, Kiev, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Klochkov.

Additional information

Original Russian Text © B.N. Klochkov.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 3, pp. 55–64, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klochkov, B.N. Wave effects in collapsible biovessels. J Appl Mech Tech Phy 56, 391–398 (2015). https://doi.org/10.1134/S0021894415030074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415030074

Keywords

Navigation