Skip to main content
Log in

Effect of the amplitude of vibrations on the pull-in instability of double-sided actuated microswitch resonators

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper exhibits the effect of the amplitude of vibrations on the pull-in instability and nonlinear natural frequency of a double-sided actuated microswitch by using a nonlinear frequency-amplitude relationship. The nonlinear governing equation of the microswitch pre-deformed by an electric field includes even and odd nonlinearities with a quintic nonlinear term. The study is performed by a new analytical method called the Hamiltonian approach (HA). It is demonstrated that the first term in series expansions is sufficient to produce an acceptable solution. Results obtained by numerical methods validate the soundness of the asymptotic procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Sedighi and K. H. Shirazi, “Vibrations of Micro-Beams Actuated by an Electric Field via Parameter Expansion Method,” Acta Astronaut. 85, 19–24 (2013); DOI: 10.1016/j.actaastro.2012.11.014.

    Article  ADS  Google Scholar 

  2. Y. Khan and M. Akbarzade, “Dynamic Analysis of Nonlinear Oscillator Equation Arising in Double-Sided Driven Clamped Microbeam-Based Electromechanical Resonator,” Z. Naturforsch. 67a, 435–440 (2012); DOI: 10.5560/ZNA.2012-0043.

    ADS  Google Scholar 

  3. H. Mobki, G. Rezazadeh, M. Sadeghi, et al., “A Comprehensive Study of Stability in an Electro-Statically Actuated Micro-Beam,” Int. J. Non-Linear Mech. 48, 78–85 (2013); DOI: 10.1016/j.ijnonlinmec.2012.08.002.

    Article  ADS  Google Scholar 

  4. F. Lakrad and M. Belhaq, “Suppression of Pull-In in a Microstructure Actuated by Mechanical Shocks and Electrostatic Forces,” Int. J. Non-Linear Mech. 46(2), 407–414 (2011).

    Article  ADS  Google Scholar 

  5. N. Kacem, S. Baguet, S. Hentz, and R. Dufour, “Pull-In Retarding in Nonlinear Nanoelectromechanical Resonators under Superharmonic Excitation,” J. Comput. Nonlinear Dynam. 7, 021011 (2012); DOI: 10.1115/1.4005435.

    Article  Google Scholar 

  6. H. Moeenfard, A. Darvishian, H. Zohoor, and M. T. Ahmadian, “Characterization of the Static Behavior of Micromirrors under the Effect of Capillary Force, an Analytical Approach,” Proc. Inst. Mech. Engrs. Pt C. J. Mech. Engng Sci. 226(9), 2361–2372 (2012); DOI: 10.1177/0954406211433112.

    Article  Google Scholar 

  7. V. Kumar and J. F. Rhoads, “Modeling and Analysis of an Optically-Actuated, Bistable MEMS Device,” J. Comput. Nonlinear Dynam. 7(2), 021007 (2012); DOI: 10.1115/1.4005080.

    Article  Google Scholar 

  8. A. Noghrehabadi, M. Ghalambaz, and A. Ghanbarzadeh, “A New Approach to the Electrostatic Pull-In Instability of Nanocantilever Actuators using the ADM-Padé Technique,” Comput. Math. Appl. 64, 2806–2815 (2012); DOI: 10.1016/j.camwa.2012.04.013.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. V. Bazovkin, V. M. Kovenya, V. I. Kornilov, et al., “Effect of Micro-Blowing of a Gas from the Surface of a Flat Plate on its Drag,” J. Appl. Mech. Tech. Phys. 53(4), 490–499 (2012); DOI: 10.1134/S0021894412040037.

    Article  MATH  ADS  Google Scholar 

  10. S. Ramezani, “A Micro Scale Geometrically Non-Linear Timoshenko Beam Model Based on Strain Gradient Elasticity Theory,” Int. J. Non-Linear Mech. 47(8), 863–873 (2012); DOI: 10.1016/j.ijnonlinmec.2012.05.003.

    Article  ADS  Google Scholar 

  11. C. P. Vyasarayani, E. M. Abdel-Rahman, J. McPhee, and S. Birkett, “Modeling MEMS Resonators Past Pull-In,” J. Comput. Nonlinear Dynam. 6(3), 031008 (2011); DOI: 10.1115/1.4002835.

    Article  Google Scholar 

  12. S. Towfighian, G. R. Heppler, and E. M. Abdel-Rahman, “Analysis of a Chaotic Electrostatic Micro-Oscillator,” J. Comput. Nonlinear Dynam. 6(1), 011001 (2011).

    Article  Google Scholar 

  13. B. Chouvion, S. Mc William, A. A. Popov, and C. H. J. Fox, “Review and Comparison of Different Support Loss Models for Micro-Electro-Mechanical Systems Resonators Undergoing In-Plane Vibration,” Proc. Inst. Mech. Engrs. Part C: J. Mech. Eng. Sci. 226(1), 283–295 (2012).

    Article  Google Scholar 

  14. R. C. Batra, M. Porfiri, and D. Spinello, “Vibrations of Narrow Microbeams Predeformed by an Electric Field,” J. Sound Vibr. 309, 600–612 (2008).

    Article  ADS  Google Scholar 

  15. H. M. Sedighi, K. H. Shirazi, and J. Zare, “An Analytic Solution of Transversal Oscillation of Quintic Nonlinear Beam with Homotopy Analysis Method,” Int. J. Non-Linear Mech. 47, 777–784 (2012).

    Article  ADS  Google Scholar 

  16. H. M. Sedighi and K. H. Shirazi, “A New Approach to Analytical Solution of Cantilever Beam Vibration with Nonlinear Boundary Condition,” Trans. ASME, J. Comput. Nonlinear Dyn. 7(3), 034502 (2012); DOI: 10.1115/1.4005924.

    Article  Google Scholar 

  17. H. M. Sedighi, K. H. Shirazi, and J. Zare, “Novel Equivalent Function for Deadzone Nonlinearity: Applied to Analytical Solution of Beam Vibration using He’s Parameter Expanding Method,” Latin Amer. J. Solids Structures 9, 443–451 (2012).

    Article  Google Scholar 

  18. A. Yildirim, H. Askari, Z. Saadatnia, et al., “Analysis of Nonlinear Oscillations of a Punctual Charge in the Electric Field of a Charged Ring Via a Hamiltonian Approach and the Energy Balance Method,” Comput. Math. Appl. 62(1), 486–490 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  19. H. M. Sedighi, K. H. Shirazi, and A. Noghrehabadi, “Application of Recent Powerful Analytical Approaches on the Non-Linear Vibration of Cantilever Beams,” Int. J. Nonlinear Sci. Numer. Simulat. 13(7/8), 487–494 (2012). DOI: 10.1515/ijnsns-2012-0030.

    MathSciNet  Google Scholar 

  20. A. Yildirim, “Determination of Periodic Solutions for Nonlinear Oscillators with Fractional Powers by He’s Modified Lindstedt-Poincaré Method,” Meccanica 45(1), 1–6 (2010); DOI: 10.1007/s11012-009-9212-4.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Rafieipour, A. Lotfavar, and M. H. Mansoori, “New Analytical Approach to Nonlinear Behavior Study of Asymmetrically LCBs on Nonlinear Elastic Foundation under Steady Axial and Thermal Loading,” Latin Amer. J. Solids Structures 9, 531–545 (2012).

    Article  Google Scholar 

  22. H. Ji-Huan, “Max-Min Approach to Nonlinear Oscillators,” Int. J. Nonlinear Sci. Numer. Simulat. 9, 207–210 (2008).

    Google Scholar 

  23. H. M. Sedighi and K. H. Shirazi, “Using Homotopy Analysis Method to Determine Profile for Disk Cam by Means of Optimization of Dissipated Energy,” Int. Rev. Mech. Eng. 5, 941–946 (2011).

    Google Scholar 

  24. H. M. Sedighi, K. H. Shirazi, A. R. Noghrehabadi, and A. Yildirim, “Asymptotic Investigation of Buckled Beam Nonlinear Vibration,” Iran. J. Sci. Technol. Trans. Mech. Eng. 36(M2), 107–116 (2012).

    Google Scholar 

  25. H. M. Sedighi, K. H. Shirazi, A. Reza, and J. Zare, “Accurate Modeling of Preload Discontinuity in the Analytical Approach of the Nonlinear Free Vibration of Beams,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 226(10), 2474–2484 (2012); DOI: 10.1177/0954406211435196.

    Article  Google Scholar 

  26. M. S. Shadloo and A. Kimiaeifar, “Application of Homotopy Perturbation Method to Find an Analytical Solution for Magneto Hydrodynamic Flows of Viscoelastic Fluids in Converging/Diverging Channels,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 225, 347–353 (2011).

    Article  Google Scholar 

  27. J. H. He, “Hamiltonian Approach to Nonlinear Oscillators,” Phys. Lett. A 374(23), 2312–2314 (2010).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. H. M. Sedighi and K. H. Shirazi, “Asymptotic Approach for Nonlinear Vibrating Beams with Saturation Type Boundary Condition,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 227(11), 2479–2486 (2013); DOI: 10.1177/0954406213475561.

    Article  Google Scholar 

  29. Zand M. Moghimi and M. T. Ahmadian, “Application of Homotopy Analysis Method in Studying Dynamic Pull-In Instability of Microsystems,” Mech. Res. Comm. 36, 851–858 (2009).

    Article  MATH  Google Scholar 

  30. N. Herisanu and V. Marinca, “An Optimal Approach to Study the Nonlinear Behaviour of a Rotating Electrical Machine,” J. Appl. Math. 2012, Article ID 465023 (2012); DOI: 10.1155/2012/465023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Sedighi.

Additional information

Original Russian Text © H.M. Sedighi, K.H. Shirazi, M. Changizian.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 2, pp. 159–168, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, H.M., Shirazi, K.H. & Changizian, M. Effect of the amplitude of vibrations on the pull-in instability of double-sided actuated microswitch resonators. J Appl Mech Tech Phy 56, 304–312 (2015). https://doi.org/10.1134/S0021894415020169

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415020169

Keywords

Navigation