Skip to main content
Log in

Effect of junction configurations on microdroplet formation in a T-junction microchannel

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This study investigates the dynamic formation process of water microdroplets in a silicon oil flow in a T-junction microchannel. Segmented water microdroplets are formed at the junction when the water flow is perpendicularly injected into the silicon oil flow in a straight rectangular microchannel. This study further presents the effects of the water flow inlet geometry on hydrodynamic characteristics of water microdroplet formation. A numerical multiphase volume of fluid (VOF) scheme is coupled to solve the unsteady three-dimensional laminar Navier-Stokes equations to depict the droplet formation phenomena at the junction. Predicted results on the length and generated frequency of the microdroplets agree well with experimental results in a T-junction microchannel with straight and flat inlets (the base model) for both fluid flows. Empirical correlations are reported between the volumetric flow ratio and the dimensionless microdroplet length or dimensionless frequency of droplet generation at a fixed capillary number of 4.7 · 10−3. The results of this study indicate a reduction in the droplet length of approximately 21% if the straight inlet for the water flow is modified to a downstream sudden contraction inlet for the water flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, et al., “An Integrated Nanoliter DNA Analysis Device,” Science 282, 484–487 (1998).

    Article  ADS  Google Scholar 

  2. W. Wang, Z. X. Li, R. Luo, et al., “Droplet-Based Microoscillating-Flow PCR Chip,” J. Micromech. Microeng. 15, 1369–1377 (2005).

    Article  ADS  Google Scholar 

  3. H. Song, J. D. Tice, and R. F. Ismagilov “A Microfluidic System for Controlling Reaction Networks in Time,” Angew. Chem. Int. Ed. 42, 768–772 (2003).

    Article  Google Scholar 

  4. J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, “Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers,” Langmuir. 19, 9127–9133 (2003).

    Article  Google Scholar 

  5. H. Song, M. R. Bringer, J. D. Tice, et al., “Experimental Test of Scaling of Mixing by Chaotic Advection in Droplets Moving through Microfluidic Channels,” Appl. Phys. Lett. 83, 4664–4666 (2003).

    Article  ADS  Google Scholar 

  6. J. D. Tice, A. D. Lyon, and R. F. Ismagilov, “Effects of Viscosity on Droplet Formation and Mixing in Microfluidic Channels,” Anal. Chim. Acta 507, 73–77 (2004).

    Article  Google Scholar 

  7. S. M. S. Murshed, S. H. Tan, N. T. Nguyen, et al., “Microdroplet Formation of Water and Nanofluids in Heat-Induced Microfluidic T-Junction,” Microfluid Nanofluid 6, 253–259 (2009).

    Article  Google Scholar 

  8. N. T. Nguyen, T. H. Ting, Y. F. Yap, et al., “Thermally Mediated Droplet Formation in Microchannels,” Appl. Phys. Lett. 91, 084102 (2007).

    Article  ADS  Google Scholar 

  9. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quakem, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett., No. 6, 4163–4166 (2001).

    Google Scholar 

  10. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides “Formation of Droplets and Bubbles in a Microfluidic T-Junction-Scaling and Mechanism of Break-Up,” Lab. Chip., No. 6, 437–446 (2006).

    Google Scholar 

  11. P. M. Korczyk, O. Cybulski, S. Makulska, and P. Garstecki, “Effects of Unsteadiness of the Rates of Flow on the Dynamics of Formation of Droplets in Microfluidic Systems,” Lab. Chip., No. 11, 173–175 (2011).

    Google Scholar 

  12. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of Dispersions Using’ Flow Focusing’ in Microchannels,” Appl. Phys. Lett. 82, 364–366 (2003).

    Article  ADS  Google Scholar 

  13. P. Guillot and A. Colin, “Stability of Parallel Flows in a Microchannel after a T-Junction,” Phys. Rev. E 72, 066301 (2005).

    Article  ADS  Google Scholar 

  14. V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive Model for the Size of Bubbles and Droplets Created in Microfluidic T-Junctions,” Lab. Chip., No. 10, 2513–2518 (2010).

    Google Scholar 

  15. A. J. Abrahamse, A. Van der Padt, R. M. Boom, and W. B. C. De Heij. “Process Fundamentals of Membrane Emulsification: Simulation with CFD,” AIChE J. 47, 1285–1291 (2001).

    Article  Google Scholar 

  16. M. Rayner, G. Trägårdh, C. Trägårdh, and P. Dejmek, “Using the Surface Evolver to Model Droplet Formation Processes in Membrane Emulsification,” J. Colloid Interface Sci. 279, 75–185 (2004).

    Article  Google Scholar 

  17. S. Van der Graaf, T. Nisisako, C. G. P. H. Schroën, et al., “Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped Microchannel,” Langmuir 22, 4144–4152 (2006).

    Article  Google Scholar 

  18. M. D. Menech, “Modeling of Droplet Break up in a Microfluidic T-Shaped Junction with a Phase-Field Model,” Phys. Rev. E 73, 031505 (2006).

    Article  ADS  Google Scholar 

  19. L. Sang, Y. Hong, and F. Wang, “Investigation of Viscosity Effect on Droplet Formation in T-Shaped Microchannels by Numerical and Analytical Methods,” Microfluid Nanofluid, No. 6, 621–635 (2009).

    Google Scholar 

  20. S. Protiere, M. Z. Bazant, D. A. Weitz, and H. A. Stone, “Droplet Breakup in Flow Past an Obstacle: A Capillary Instability due to Permeability Variations,” Europhys. Lett. 92, 54002 (2010).

    Article  ADS  Google Scholar 

  21. C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys. 39, 201–225 (1981).

    Article  MATH  ADS  Google Scholar 

  22. J. U. Brackbill, D. B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension,” J. Comput. Phys. 100, 335–354 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. D. L. Youngs, “Time-Dependent Multi-Lateral Flow with Large Fluid Distortion,” in Numerical Methods for Fluid Dynamics, Ed. by K. Baines and M. Morton (Academic Press, New York, 1982), pp. 273–285.

    Google Scholar 

  24. W. J. Rider and D. B. Kothe, “Reconstructing Volume Tracking,” J. Comput. Phys. 141, 112–152 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. R. Dangla, F. Gallaire, and C. N. Baroud, “Microchannel Deformations due to Solvent-Induced PDMS Swelling,” Lab. Chip., No. 10, 2972–2978 (2010).

    Google Scholar 

  26. M. A. Holden, S. Kumar, A. Beskok, and P. S. Cremer, “Microfluidic Diffusion Diluter: Bulging of PDMS Microchannels under Pressure-Driven Flow,” J. Micromech. Microeng. 13, 412–418 (2003).

    Article  ADS  Google Scholar 

  27. T. Gervais, J. El-Ali, A. Gunther, and K. F. Jensen, “Flow-Induced Deformation of Shallow Microfluidic Channels,” Lab. Chip., No. 6, 500–507 (2006).

    Google Scholar 

  28. B. S. Hardy, K. Uechi, J. Zhen, and H. P. Kavehpour, “The Deformation of Flexible PDMS Microchannels under a Pressure Driven Flow.” Lab. Chip., No. 9, 935–938 (2009).

    Google Scholar 

  29. R. Raj, N. Mathur, and V. V. Buwa, “Numerical Simulations of Liquid-Liquid Flows in Microchannels,” Indust. Engng Chem. Res. 49, 10606–10614 (2010).

    Article  Google Scholar 

  30. H. Liu and Y. Zhang, “Droplet Formation in a T-Shaped Microfluidic Junction,” J. Appl. Phys. 106, 034906 (2009).

    Article  ADS  Google Scholar 

  31. A. Gupta, S. M. S. Murshed, and R. Kumar, “Droplet Formation and Stability of Flows in a Microfluidic T-Junction,” Appl. Phys. Lett. 94, 164107 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Lih.

Additional information

Original Russian Text © F.L. Lih, J. M. Miao.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 2, pp. 63–75, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lih, F.L., Miao, J.M. Effect of junction configurations on microdroplet formation in a T-junction microchannel. J Appl Mech Tech Phy 56, 220–230 (2015). https://doi.org/10.1134/S0021894415020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415020078

Keywords

Navigation