Skip to main content
Log in

Approximate modeling of the flow structure in a λ-shaped pseudoshock

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

An approximate analytical model of the flow structure in a plane λ-shaped pseudoshock consisting of a viscous boundary layer and an inviscid core flow is proposed. It is assumed that the boundary layer edge is a streamline with a specified pressure distribution along the channel and that the flow in the pseudoshock consists of an input segment (Mach reflection of an oblique shock wave) and a sequence of internal segments with an identical structure (shock train). Comparisons with experimental data and results of numerical calculations are performed. It is shown that the model provides a sufficiently accurate description of the pseudoshock flow structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aviation: Encycloperida Ed. by G. P. Svishchev (Bolshaya Rossiiskaya Entsiklopediya, Moscow, 1994) [in Russian].

    Google Scholar 

  2. A. Weiss, A. Grzona, and H. Olivier, “Behavior of Shock Trains in a Diverging Duct,” Exp. Fluids 49(2), 355–365 (2010).

    Article  Google Scholar 

  3. L. Crocco, “One-Dimensional Treatment of Steady Gas Dynamics,” in High Speed Aerodynamics and Jet Propulsion, Ed. by H. W. Emmons (Princeton University Press, Princeton, 1958).

    Google Scholar 

  4. I. Takefumi, M. Kazuyasu, and N. Minoru, “The Mechanism of Pseudo-Shock Waves,” Bull. JSME 17(108), 731–739 (1974).

    Article  Google Scholar 

  5. E. S. Shchetinkov, “Piecewise-0ne-dimensional models of supersonic Combustion and Pseudo-Shock in a Duct,” Fiz. Goreniya Vzryva 9(4), 473–483 (1973) [Combust., Expl., Shock Waves 9 (4), 409–417 (1973)].

    Google Scholar 

  6. T. Kanda and K. Tani, “Momentum Balance Model of Flow Field with Pseudo-Shock,” AIAA Paper No. 2005-1045 (2005).

    Google Scholar 

  7. T. Kanda and K. Tani, “Momentum Balance Model of Flow Field with Pseudo-Shock,” JAXA Res. Develop. Rep. No. JAXA-RR-06-037E (Japan Aerospace Exploration Agency, Tokyo, 2007).

    Google Scholar 

  8. K. Matsuo, Y. Miyazato, and H.-D. Kim, “Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows,” Progr. Aerospace Sci. 35(1), 33–100 (1999).

    Article  ADS  Google Scholar 

  9. A. Godbole, “Shock-Assisted Pneumatic Injection Technology,” Ph. D. Dissertation (Wollongong, 1998).

    Google Scholar 

  10. A. Godbole, P. Wypych, W. K. Soh, et al., “Pseudo-Shock in Supersonic Injection Feeder,” in Proc. of the 2nd Int. Conf. on CFD in the Minerals and Process Industries CSIRO, Melbourne (Australia), December 6–8, 1999, pp. 107–112.

  11. A. F. Latypov, “Entropy Maximum Principle for a Steady Gas Flow in a Channel,” Prikl. Mekh. Tekh. Fiz. 52(3), 68–73 (2011) [Appl. Mech. Tech. Phys. 52 (3), 385–389 (2011)].

    MathSciNet  Google Scholar 

  12. T. Tamaki, Y. Tomita, and R. Yamane, “A Study of Pseudo-Shock: 1st Report, λ-Type Pseudo-Shock,” Bull. JSME 13(55), 51–58 (1970).

    Article  Google Scholar 

  13. T. Tamaki, Y. Tomita, and R. Yamane, “A Study of Pseudo-Shock: 2nd Report, X-Type Pseudo-Shock,” Bull. JSME 14(74), 807–817 (1971).

    Article  Google Scholar 

  14. E. E. Zukoski, “Turbulent Boundary-Layer Separation in Front of a Forward-Facing Step,” AIAA J. 5(10), 1746–1753 (1967).

    Article  ADS  Google Scholar 

  15. D. D. Knight and A. A. Zheltovodov, “Ideal-Gas ShockWave-Turbulent Boundary-Layer Interactions (STBLIs) in Supersonic Flows and Their Modeling: Two-Dimensional Interactions,” in Shock Wave-Boundary-Layer Interactions, Chapter 4, Ed. by H. Babinsky and J. Harvey (Cambridge Univ. Press, New York, 2011), pp. 137–201.

    Chapter  Google Scholar 

  16. O. V. Gus’kov, V. I. Kopchenov, I. I. Lipatov, et al., Processes of Deceleration of Supersonic Flow in Channels (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  17. A. E. Medvedev and V. M. Fomin, “Approximate analytical Calculation of the Mach Configuration of Steady Shock Waves in a Plane Constricting Channel,” Prikl. Mekh. Tekh. Fiz. 39(3), 52–58 (1998) [Appl. Mech. Tech. Phys. 39 (3), 369–374 (1998)].

    MATH  Google Scholar 

  18. A. E. Medvedev and V. M. Fomin, “Approximate Analytical Calculation of the Mach Configuration of Steady Shock Waves in a Plane Constricting Channel,” Teplofiz. Aeromekh. 6(2), 157–164 (1999) [Thermophys. Aeromech. 6 (2), 143–150 (1999)].

    Google Scholar 

  19. A. E. Medvedev, “Reflection of an Oblique ShockWave in a Reacting Gas with a Finite Length of the Relaxation Zone,” Prikl. Mekh. Tekh. Fiz. 42(2), 33–41 (2001) [Appl. Mech. Tech. Phys. 42 (2), 211–218 (2001)].

    MATH  Google Scholar 

  20. J. Delery, Physical Introduction, Chapter 2, Ed. by H. Babinsky and J. Harvey (Cambridge Univ. Press, New York, 2011), pp. 5–86.

  21. C. A. Mouton, “Transition between Regular Reflection and Mach Reflection in the Dual-Solution Domain,” Ph. D. Dissertation (Pasadena, 2007).

    Google Scholar 

  22. D. J. Azevedo and C. S. Liu, “Engineering Approach to the Prediction of Shock Patterns in Bounded High-Speed Flows,” AIAA J. 31(1), 83–90 (1993).

    Article  ADS  MATH  Google Scholar 

  23. P. K. Chang, Separation of Flow (Pergamon Press, Oxford, 1970).

    MATH  Google Scholar 

  24. L. F. Henderson, “The Reflexion of a Shock Wave at a Rigid Wall in the Presence of a Boundary Layer,” J. Fluid Mech. 30(4), 699–722 (1967).

    Article  ADS  MATH  Google Scholar 

  25. F. F. Tarasov, “Investigations of the Pseudoshock in Long Channels,” Candidate’ Dissertation in Tech. Sci. (Kazan’, 1967).

    Google Scholar 

  26. F. Billig, “Research on Supersonic Combustion,” J. Propuls. Power 9(4), 499–514 (1992).

    Article  Google Scholar 

  27. L. Lees and B. L. Reeves, “Supersonic Separated and Reattaching Laminar Flows. 1. General Theory and Application to Adiabatic Boundary-Layer/Shock-Wave Interactions,” AIAA J. 2(11), 1907–1920 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  28. G. I. Petrov, Selected Papers. High-Velocity Aeromechanics and Space Research, Ed. by Yu. V. Chudetskii (Nauka, Moscow, 1992), pp. 146–184 [in Russian].

  29. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978; Elsevier, 1966).

    Google Scholar 

  30. H. Li and G. Ben-Dor, “A Parametric Study of Mach Reflection in Steady Flows,” J. Fluid Mech. 341, 101–125 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. J. C. Dutton and D. F. Carroll, “Numerical and Experimental Investigation of Multiple Shock Wave/Turbulent Boundary Layer Interactions in a Rectangular Duct,” Report Univ. Illinois, No. UILU-ENG-88-4001 (Urbana, 1988).

    Google Scholar 

  32. B. Carroll and J. Dutton, “An LDV Investigation of a Multiple Shock Wave. Turbulent Boundary Layer Interaction,” AIAA Paper No. 89-0355 (1989).

    Google Scholar 

  33. B. Carroll and J. Dutton, “Turbulence Phenomena in Multiple Normal Shock Wave. Turbulent Boundary Layer Interaction,” AIAA J. 30(1), 43–48 (1992).

    Article  ADS  Google Scholar 

  34. L. Q. Sun, H. Sugiyama, K. Mizobata, et al., “Numerical and Experimental Investigations on the Mach 2 Pseudo-Shock Wave in a Square Duct,” J. Visual. 6(4), 363–370 (2003).

    Article  Google Scholar 

  35. L. Sun, H. Sugiyama, K. Mizobata, et al., “Numerical and Experimental Investigations on Mach 2 and 4 Pseudo-Shock Waves in a Square Duct,” Trans. Jpn. Soc. Aeronaut. Space Sci. 47(156), 124–130 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Medvedev.

Additional information

Original Russian Text © A.E. Medvedev.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 55, No. 6, pp. 43–59, November–December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, A.E. Approximate modeling of the flow structure in a λ-shaped pseudoshock. J Appl Mech Tech Phy 55, 942–956 (2014). https://doi.org/10.1134/S0021894414060054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894414060054

Keywords

Navigation