Skip to main content
Log in

Anisotropy tensor of the potential model of steady creep

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The Kelvin approach describing the structure of the generalized Hooke’s law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Rabotnov, Creep Problems in Structural Members (Nauka, Moscow, 1966; North-Holland, Amsterdam, 1969).

    Google Scholar 

  2. O. V. Sosnin, “Anisotropy of Creep of Materials,” Prikl. Mekh. Tekh. Fiz. 6(6), 99–104 (1965) [J. Appl. Mech. Tech. Phys. 6 (6), 67–70 (1965)].

    Google Scholar 

  3. A. C. Pipkin, “Constraints in Linearly Elastic Materials,” J. Elast. 6(2), 179–193 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Podio-Guidugli and M. Vianello, “Internal Constraints and Linear Constitutive Relations for Transversely Isotropic Materials,” Rend. Lincei. Mat. Appl. Ser. 2(3), 241–248 (1991).

    MATH  MathSciNet  Google Scholar 

  5. C. A. Felippa and E. Oñate, “Stress, Strain, and Energy Splittings for Anisotropic Elastic Solids under Volumetric Constraints,” Comput. Struct. 81(13), 1343–1357 (2003).

    Article  Google Scholar 

  6. C. A. Felippa and E. Oñate, “Volumetric Constraint Models for Anisotropic Elastic Solids,” Trans. ASME, J. Appl. Mech. 71(5), 731–734 (2004).

    Article  ADS  MATH  Google Scholar 

  7. K. Kowalczyk-Gajewska and J. Ostrowska-Maciejewska, “The Influence of Internal Restrictions on the Elastic Properties of Anisotropic Materials,” Arch. Mech. 56(3), 205–232 (2004).

    MATH  MathSciNet  Google Scholar 

  8. Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  9. B. D. Annin and N. I. Ostrosablin, “Anisotropy of Elastic Properties of Materials,” Prikl. Mekh. Tekh. Fiz. 49(6), 131–151 (2008) [J. Appl. Mech. Tech. Phys. 49 (6), 998–1014 (2008)].

    MathSciNet  Google Scholar 

  10. F. R. Gantmacher, Theory of Matrices (Gostekhteoretizdat, Moscow, 1954; Academic Press, New York, 1985).

    Google Scholar 

  11. B. E. Pobedrya, Lectures on Tensor Analysis (Izd. Mosk. Univ., Moscow, 1979) [in Russian].

    Google Scholar 

  12. N. I. Ostrosablin, “Elasticity and State Eigenmodules for Materials of Crystallographic Symmetries,” in Dynamics of Continuous Media, No. 75 (Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1986), pp. 113–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Annin.

Additional information

Original Russian Text © B.D. Annin, N.I. Ostrosablin.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 55, No. 1, pp. 5–12, January–February, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annin, B.D., Ostrosablin, N.I. Anisotropy tensor of the potential model of steady creep. J Appl Mech Tech Phy 55, 1–7 (2014). https://doi.org/10.1134/S0021894414010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894414010015

Keywords

Navigation