Skip to main content
Log in

Mathematical modeling of jet interaction with a high-enthalpy flow in an expanding channel

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of modeling the interaction of a plane supersonic jet with a supersonic turbulent high-enthalpy flow in a channel are reported. The problem is solved in a two-dimensional formulation at external flow Mach numbers M = 2.6 and 2.8 and at high values of the total temperature of the flow T 0 = 1800–2000 K. The mathematical model includes full averaged Navier-Stokes equations supplemented with a two-equation turbulence model and an equation that describes the transportation of the injected substance. The computations are performed by using the ANSYS Fluent 12.1 software package. Verification of the computational technique is performed against available experimental results on transverse injection of nitrogen and helium jets. The computed and experimental results are demonstrated to agree well. For the examined problems, in addition to surface distributions of characteristics, fields of flow parameters are obtained, which allow one to reproduce specific features that can be hardly captured in experiments. Parametric studies show that an increase in the angle of inclination and the mass flow rate of the jet leads to an increase in the depth of jet penetration into the flow, but more intense separated flows and shock waves are observed in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Schetz, P. F. Hawkins, and H. Lehman, “Structure of Highly Underexpanded Transverse Jets in a Supersonic Stream,” AIAA J., No. 5, 882–884 (1967).

    Google Scholar 

  2. V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Exhaustion Processes (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  3. V. Viti, R. Neel, and J. A. Schetz, “Detailed Flow Physics of the Supersonic Jet Interaction Flow Field,” Phys. Fluids 21, 046101 (2009).

    Article  ADS  Google Scholar 

  4. E. E. Zukoski and F. W. Spaid, “Secondary Injection of Gases into a Supersonic Flow,” AIAA J. 2(10), 1689–1696 (1964).

    Article  Google Scholar 

  5. V. S. Avduevskii, K. I. Medvedev, and M. N. Polyanskii, “Interaction of a Supersonic Flow with a Transverse Jet Injected through a Circular Orifice in a Flat Plate,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 193–197 (1970).

    Google Scholar 

  6. V. V. Eremin, Yu. M. Lipnitskii, A. N. Pokrovskii, et al., “Investigation of Interaction of a Plane Transverse Gas Jet with a Supersonic Flow,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 103–110 (1975).

    Google Scholar 

  7. F. S. Billing, R. S. Orth, and M. Lasky, “A Unified Analysis of Gaseous Jet Penetration,” AIAA J. 9(6), 1048–1058 (1971).

    Article  ADS  Google Scholar 

  8. N. E. Hawk and J. L. Amick, “Two-Dimensional Secondary Jet Interaction with a Supersonic Stream,” AIAA J. 5(4), 655–660 (1967).

    Article  ADS  Google Scholar 

  9. A. I. Glagolev, A. I. Zubkov, and Yu. A. Panov, “Interaction of a Gas Jet Escaping from an orifice in a Flat Plate with a Supersonic Flow,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 99–103 (1968).

    Google Scholar 

  10. M. R. Gruber, A. S. Nejad, T. H. Chen, and J. C. Dutton, “Mixing and Penetration Studies of Sonic Jets in a Mach 2 Freestream,” AIAA Paper No. 1994-709 (1994).

    Google Scholar 

  11. J. R. Sterrett, J. B. Burber, D.W. Alston, and D. J. Romeo, “Experimental Investigation of Secondary Jets from Two-Dimensional Nozzles with Various Exit Mach Numbers for Hypersonic Control Application,” Tech. Note NASA No. D-3795, Washington (1967).

    Google Scholar 

  12. W. J. Thayer and R. C. Corlett, “Gas Dynamic and Transport Phenomena in the Two-Dimensional Jet Interaction Flowfield,” AIAA J. 10(4), 488–493 (1972).

    Article  ADS  Google Scholar 

  13. R. Portz and C. Segal, “Penetration of Gaseous Jets in Supersonic Flows,” AIAA J. 44(10), 2426–2429 (2006).

    Article  ADS  Google Scholar 

  14. R. J. Goldstein, G. Shavit, and T. S. Chen, “Film-Cooling Effectiveness with Injection through a Porous Section,” J. Heat Transfer 87, 353–361 (1965).

    Article  Google Scholar 

  15. V. I. Penzin, “Experimental Study of Transverse Injection into a Supersonic Flow in a Channel,” Uch. Zap. TsAGI 4(6), 112–118 (1973).

    Google Scholar 

  16. V. Ya. Borovoy and M. V. Ryzhkova, “Gas Flow and Heat Transfer on a Cone near a Transverse Jet with a Laminar State of the Boundary Layer,” Uch. Zap. TsAGI 5(4), 48–58 (1974).

    Google Scholar 

  17. A. Ya. Nadyrshin and Z. G. Shaihutdinov, “Mixing of a Supersonic Flow with a Transverse Jet Injected through a Circular Orifice in a Flat Plate,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 14–18 (1975).

    Google Scholar 

  18. M. R. Gruber, A. S. Nejad, T. H. Chen, and J. C. Dutton, “Large Structure Convection Velocity Measurements in Compressible Transverse Injection Flowfields,” Exp. Fluids 22, 397–407 (1997).

    Article  Google Scholar 

  19. W. M. Van Lerberghe, J. G. Santiago, J. C. Dutton, and R. P. Lucht, “Mixing of a Sonic Transverse Jet Injected into a Supersonic Flow,” AIAA J. 38(3), 470–479 (2000).

    Article  ADS  Google Scholar 

  20. J. P. Drummond, “Numerical Solution for Perpendicual Sonic Hydrogen Injection into a Ducted Supersonic Airstream,” AIAA J. 17(5), 531–533 (1979).

    Article  ADS  MATH  Google Scholar 

  21. F. Grasso and V. Magi, “Simulation of Transverse Gas Injection in Turbulent Supersonic Air Flows,” AIAA J. 33(1), 56–62 (1995).

    Article  ADS  MATH  Google Scholar 

  22. V. K. Baev, V. I. Golovichev, and P. K. Tret’yakov, “Combustion in a Supersonic Flow,” Fiz. Goreniya Vzryva 23(5), 5–15 (1987) [Combust., Explos., Shock Waves 23 (5), 511–520 (1987)].

    Google Scholar 

  23. Z. A. Rana, B. Thornber, and D. Drikakis, “Transverse Jet Injection into a Supersonic Turbulent Cross-Flow,” Phys. Fluids 23, 046103 (2011).

    Article  ADS  Google Scholar 

  24. A. O. Beketaeva and A. Zh. Naimanova, “Numerical Study of Spatial Supersonic Flow of a Perfect Gas with Transverse Injection of Jets,” Prikl. Mekh. Tekh. Fiz. 52(6), 58–68 (2011) [Appl. Mech. Tech. Phys. 52 (6), 896–904 (2011)].

    Google Scholar 

  25. R. L. Roe, “Characteristic Based Schemes for the Euler Equations,” Annual Rev. Fluid Mech. 18, 337–365 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. S. Liou, “A Sequel to AUSM: AUSM+,” J. Comput. Phys. 129, 364–382 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Fedorova.

Additional information

Original Russian Text © N.N. Fedorova, I.A. Fedorchenko, A.V. Fedorov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 54, No. 2, pp. 32–45, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorova, N.N., Fedorchenko, I.A. & Fedorov, A.V. Mathematical modeling of jet interaction with a high-enthalpy flow in an expanding channel. J Appl Mech Tech Phy 54, 195–206 (2013). https://doi.org/10.1134/S002189441302003X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189441302003X

Keywords

Navigation