Skip to main content
Log in

Thermal radiation effect on mixed convection heat and mass transfer of a non-Newtonian fluid over a vertical surface embedded in a porous medium in the presence of thermal diffusion and diffusion-thermo effects

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Thermal radiation, thermal diffusion, and diffusion-thermo effects on heat and mass transfer by mixed convection of non-Newtonian power-law fluids over a vertical permeable surface embedded in a saturated porous medium are investigated. The governing equations describing the problem are non-dimensionalized and transformed into a non-similar form. The transformed equations are solved by using the local non-similarity method combined with the shooting technique. The effects of the physical parameters of the problem on the fluid temperature and concentration are illustrated graphically and analyzed. Also, the effects of the pertinent parameters on the local Nusselt number and the local Sherwood number are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Cheng and W. J. Minkowycz, “Free Convection about a Vertical Flat Plate Embedded in a Porous Medium with Application to Heat Transfer from a Dike,” J. Geophys. Res. 82, 2040–2044 (1977).

    Article  ADS  Google Scholar 

  2. W. B. Hooper, T. S. Chen, and B. F. Armaly, “Mixed Convection from a Vertical Plate in Porous Media with Surface Injection or Suction,” Numer. Heat Transfer 25, 317–329 (1993).

    Article  ADS  Google Scholar 

  3. E. M. Sparrow, H. Quack, and C. J. Boerner, “Local Non-Similarity Boundary-Layer Solutions,” AIAA J. 8, 1936–1942 (1970).

    Article  ADS  MATH  Google Scholar 

  4. E. M. Sparrow and H. S. Yu, “Local Nonsimilarity Thermal Boundary-Layer Solutions,” Trans. ASME, J. Heat Transfer 93, 328–332 (1971).

    Article  Google Scholar 

  5. D. A. White, “Non-Newtonian Flow in Porous Media,” Chem. Eng. Sci. 22, 669–672 (1967).

    Article  Google Scholar 

  6. H. Pascal and J. P. Pascal, “Nonlinear Effects of Non-Newtonian Fluids on Natural Convection in a Porous Medium,” Physica D 40, 393–402 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J. P. Pascal and H. Pascal, “Free Convection in a Non-Newtonian Fluid Saturated Porous Medium with Lateral Mass Flux,” Int. J. Non-Linear Mech. 32, 471–482 (1997).

    Article  ADS  MATH  Google Scholar 

  8. A. Subhas and P. Veena, “Visco-Elastic Fluid Flow and Heat Transfer in a Porous Medium over a Stretching Sheet,” Int. J. Non-Linear Mech. 33, 531–540 (1998).

    Article  ADS  MATH  Google Scholar 

  9. R. Y. Jumah and A. S. Mujumdar, “Natural Convection Heat and Mass Transfer from a Vertical Flat Plate with Variable Wall Temperature and Concentration to Power-Law Fluids with Yield Stress in a Porous Medium,” Chem. Eng. Comm. 185, 165–182 (2001).

    Article  Google Scholar 

  10. K. V. Prasad, S. Abel, and P. S. Datti, “Diffusion of Chemically Reactive Species of a Non-Newtonian Fluid Immersed in a Porous Medium over a Stretching Sheet,” Int. J. Non-Linear Mech. 38, 651–657 (2003).

    Article  ADS  MATH  Google Scholar 

  11. C.-Y. Cheng, “Natural Convection Heat and Mass Transfer of Non-Newtonian Power Law Fluids with Yield Stress in Porous Media from a Vertical Plate with Variable Wall Heat and Mass Fluxes,” Int. Comm. Heat Mass Transfer 33, 1156–1164 (2006).

    Article  Google Scholar 

  12. M. Hameed and S. Nadeem, “Unsteady MHD Flow of a Non-Newtonian Fluid on a Porous Plate,” J. Math. Anal. Appl. 325, 724–733 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. S. Bataller, “On Unsteady Gravity Flows of a Power-Law Fluid through a Porous Medium,” Appl. Math. Comput. 196, 356–362 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. V. S. N. Murthy, S. Mukherjee, D. Srinivasacharya, and P. V. S. S. S. R. Krishna, “Combined Radiation and Mixed Convection from a Vertical Wall with Suction/Injection in a Non-Darcy Porous Medium,” Acta Mech. 168, 145–156 (2004).

    Article  MATH  Google Scholar 

  15. S. Abel, K. V. Prasad, and A. Mahaboob, “Buoyancy Force and Thermal Radiation Effects in MHD Boundary Layer Visco-Elastic Fluid Flow over Continuously Moving Stretching Surface,” Int. J. Therm. Sci. 44, 465–476 (2005).

    Article  Google Scholar 

  16. M. A. A. Mahmoud, M. A. Mahmoud, and S. E. Waheed, “Hydromagnetic Boundary Layer Micropolar Fluid Flow over a Stretching Surface Embedded in a Non-Darcian Porous Medium with Radiation,” Math. Probl. Engng. Article ID 39392, 1–10 (2006).

    Google Scholar 

  17. S. Krishnambal and P. Anuradha, “Effect of Radiation on the Flow of a Visco-Elastic Fluid and Heat Transfer in a Porous Medium over a Stretching Sheet,” J. Appl. Sci. 6, 2901–2906 (2006).

    Article  ADS  Google Scholar 

  18. E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer (McGraw Hill, New York, 1972).

    MATH  Google Scholar 

  19. A. Postelnicu, “Influence of a Magnetic Field on Heat and Mass Transfer by Natural Convection from Vertical Surfaces in Porous Media Considering Soret and Dufour Effects,” Int. J. Heat Mass Transfer 47, 1467–1472 (2004).

    Article  MATH  Google Scholar 

  20. N. T. Eldabe, A. G. El-Saka, and A. Fouad, “Thermal-Diffusion and Diffusion-Thermo Effects on Mixed Free-Forced Convection and Mass Transfer Boundary Layer Flow for Non-Newtonian Fluid with Temperature Dependent Viscosity,” Appl. Math. Comput. 152, 867–883 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Postelnicu, “Influence of Chemical Reaction on Heat and Mass Transfer by Natural Convection from Vertical Surfaces in Porous Media Considering Soret and Dufour Effects,” Heat Mass Transfer 43, 595–602 (2007).

    Article  ADS  Google Scholar 

  22. M. K. Partha, P. V. S. N. Murthy, and G. P. Raja Sekhar, “Soret and Dufour Effects in a Non-Darcy Porous Medium,” J. Heat Transfer 128, 605–610 (2006).

    Article  Google Scholar 

  23. N. G. Kafoussias and E. W. Williams, “Thermal-Diffusion and Diffusion Thermo Effects on Mixed Free-Forced Convective and Mass Transfer Boundary Layer Flow with Temperature Dependent Viscosity,” Int. J. Eng. Sci. 33, 1369–1384 (1995).

    Article  MATH  Google Scholar 

  24. P. A. Lakshmi and P. V. S. N. Murthy, “Soret and Dufour Effects on Free Convection Heat and Mass Transfer from a Horizontal Flat Plate in a Darcy Porous Medium,” J. Heat Transfer 130, 104504-1–104504-5 (2008).

    Google Scholar 

  25. A. J. Chamkha and A. Ben-Nakhi, “MHD Mixed Convection-Radiation Interaction along a Permeable Surface Immersed in a Porous Medium in the Presence of Soret and Dufour’s Effects,” Heat Mass Transfer 44, 845–856 (2008).

    Article  ADS  Google Scholar 

  26. T. Hayat, M. Mustafa, and I. Pop, “Heat and Mass Transfer for Soret and Dufour’s Effect on Mixed Convection Boundary Layer Flow over a Stretching Vertical Surface in a Porous Medium Filled with a Viscoelastic Fluid,” Comm. Nonlinear Sci. Numer. Simulat. 15, 1183–1196 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. O. Anwar Bég, A. Y. Bakier, and V. R. Prasad, “Numerical Study of Free Convection Magnetohydrodynamic Heat and Mass Transfer from a Stretching Surface to a Saturated Porous Medium with Soret and Dufour Effects,” Comput. Materials Sci. 46, 57–65 (2009).

    Article  Google Scholar 

  28. A. J. Chamkha and M. A. Jasem, “Mixed Convection Heat and Mass Transfer of Non-Newtonian Fluids from a Permeable Surface Embedded in a Porous Medium,” Int. J. Numer. Methods Heat Fluid Flow 17, 195–212 (2007).

    Article  Google Scholar 

  29. R. V. Christopher and S. Middlemann, “Power-Law through a Packed Tube,” Ind. Eng. Chem. Fundam. 4, 424–426 (1965).

    Article  Google Scholar 

  30. R. V. Dharmadhikari and D. D. Kale, “Flow of Non-Newtonian Fluids through Porous Media,” Chem. Eng. Sci. 40, 527–529 (1985).

    Article  Google Scholar 

  31. A. Raptis, “Flow of a Micropolar Fluid past a Continuously Moving Plate by the Presence of Radiation,” Int. J. Heat Mass Transfer 41, 2865–2866 (1998).

    Article  MATH  Google Scholar 

  32. A. Raptis, “Radiation and Viscoelastic Flow,” Int. Comm. Heat Mass Transfer 26, 889–895 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. A. Mahmoud.

Additional information

Original Russian Text © M.A.A. Mahmoud, A.M. Megahed.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 54, No. 1, pp. 105–115, January–February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, M.A.A., Megahed, A.M. Thermal radiation effect on mixed convection heat and mass transfer of a non-Newtonian fluid over a vertical surface embedded in a porous medium in the presence of thermal diffusion and diffusion-thermo effects. J Appl Mech Tech Phy 54, 90–99 (2013). https://doi.org/10.1134/S0021894413010112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894413010112

Keywords

Navigation