Skip to main content
Log in

Application of group analysis to stochastic equations of fluid dynamics

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Group analysis is used to study stochastic equations of fluid dynamics. Determining equations for admitted Lie groups of transformation involving independent and dependent variables and Wiener processes are obtained. It is shown that, as in the case of deterministic differential equations, admitted groups make it possible to reduce invariant solutions of stochastic differential equations to solutions with a smaller number of independent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Pope, Turbulent Flows (Cambridge Univ. Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  2. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer, New York, 1997).

    MATH  Google Scholar 

  3. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007).

    Google Scholar 

  4. A. N. Shiryaev, Essentials of Stochastic Finance. Facts, Models, Theory (World Sci., Hong Kong, 1999).

    Google Scholar 

  5. A. Bensoussan and R. Temam, “Equatios Stochastique du Type Navier-Stokes,” J. Funct. Anal. 13, 195–222 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Mikulevicius and B. L. Rozovskii, “Stochastic Navier-Stokes Equations for Turbulent Flows,” SIAM J. Math. Anal. 35(5), 1250–1310 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. S. Nasyrov, Local Times, Symmetric Integrals, and Stochastic Analysis (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  8. L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).

    MATH  Google Scholar 

  9. CRC Handbook of Lie Group Analysis of Differential Equations, Ed. by N. H. Ibragimov, Vol. 1 (CRC Press, Boca Raton, 1994).

    MATH  Google Scholar 

  10. CRC Handbook of Lie Group Analysis of Differential Equations Ed. by N. H. Ibragimov, Vol. 2 (CRC Press, Boca Raton, 1995).

    MATH  Google Scholar 

  11. CRC Handbook of Lie Group Analysis of Differential Equations Ed. by N. H. Ibragimov, Vol. 3 (CRC Press, Boca Raton, 1996).

    MATH  Google Scholar 

  12. L. V. Ovsyannikov, “Group and Group-Invariant Solutions of Differential Equations,” Dokl. Akad. Nauk SSSR 118,(3), 439–442 (1958).

    MathSciNet  MATH  Google Scholar 

  13. L. V. Ovsyannikov, “The SUBMODELS Program. Gas dynamics,” Prikl. Mat. Mekh. 58(4), 30–55 (1994).

    MathSciNet  Google Scholar 

  14. L. V. Ovsyannikov, “Some Results of the SUBMODELS Program for the Equations of Gas Dynamics,” Prikl. Mat. Mekh. 63(3), 362–372 (1999).

    MathSciNet  MATH  Google Scholar 

  15. V. V. Pukhnachev, “Group Properties of the Navier-Stokes Equations in the Two-Dimensional Case,” Prikl. Mekh. Tekh. Fiz., No. 1, 83–90 (1960).

  16. V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov, Use of Group-Theoretic Methods in Hydrodynamics (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  17. V. V. Pukhnachev, “Symmetry in the Navier-Stokes Equations,” Usp. Mekh. 4(1), 6–76 (2006).

    Google Scholar 

  18. S. V. Meleshko, “Methods for Constructing Exact Solutions of Partial Differential Equations,” in Mathematical and Analytical Techniques with Applications to Engineering (Springer, New York, 2005).

    Google Scholar 

  19. Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, and S. V. Meleshko, Symmetries of Integro-Differential Equations and Their Applications in Mechanics and Plasma Physics (Springer, Berlin, Heidelberg, 2010). (Lecture Notes Phys., Vol. 806.)

    Book  Google Scholar 

  20. T. Misawa, “New Conserved Quantities Form Symmetry for Stochastic Dynamical Systems,” J. Phys. A. 27, 177–192 (1994).

    Article  MathSciNet  Google Scholar 

  21. S. Albeverio and S. Fei, “Remark on Symmetry of Stochastic Dynamical Systems and Their Conserved Quantities,” J. Phys. A. 28, 6363–6371.

  22. O. V. Aleksandrova, “Group Analysis of the Two-Dimensional Itô Stochastic Equation,” Vestn. Donbas. Nats. Akad. Str. Arkh. 1, 140–145 (2005).

    Google Scholar 

  23. O. V. Alexsandrova, “Group Analysis of the Itô Stochastic System,” Differ. Eq. Dyn. Syst. 14(3/4), 255–280 (2006).

    Google Scholar 

  24. G. Gaeta and N. R. Quinter, “Lie-Point Symmetries and Differential Equations,” J. Phys. A. 32, 8485–8505 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. G. Gaeta, “Symmetry of Stochastic Equations,” in Symmetry in Nonlinear Mathematical Physics (Inst. of Math. of NAS of Ukraine, Kyiv, 2004), pp. 98–109.

    Google Scholar 

  26. G. Ünal, “Symmetries of Itô and Stratonovich Dynamical Systems and Their Conserved Quantities,” Nonlinear Dyn. 32, 417–426 (2003).

    Article  MATH  Google Scholar 

  27. G. Ünal, and J. Q. Sun, “Symmetries Conserved Quantities of Stochastic Dynamical Control Systems,” Nonlinear Dyn. 36, 107–122 (2004).

    Article  MATH  Google Scholar 

  28. N. H. Ibragimov, G. Ünal, and C. Jogréus, “Approximate Symmetries and Conservation Laws for Itô and Stratonovich Dynamical Systems,” J. Math. Anal. Appl. 297, 152–168 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  29. F. M. Mahomed and C. Wafo Soh, “Integration of Stochastic Ordinary Differential Equations from a Symmetry Standpoint,” J. Phys. A. 34, 777–782 (2001).

    Google Scholar 

  30. S. A. Melnick, “The Group Analysis of Stochastic Partial Differential Equations,” Theory Stochast. Proc. 9(1/2), 99–107 (2003).

    MathSciNet  Google Scholar 

  31. B. Srihirun, S. V. Meleshko, and E. Schulz, “On the Definition of an Admitted Lie Group for Stochastic Differential Equations,” Comm. Nonlinear Sci. Numer. Simulat. 12(8), 1379–1389 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. B. Srihirun, S. V. Meleshko, and E. Schulz, “On the Definition of an Admitted Lie Group for Stochastic Differential Equations with Multi-Brownian Motion,” J. Phys. A. 39, 13951–13966 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. B. Øksendal, Stochastic Ordinary Differential Equations. An Introduction with Applications (Springer, Berlin, 1998).

    Google Scholar 

  34. D. Nualart, Malliavin Calculus and Related Topics (Springer, New York, 2006).

    MATH  Google Scholar 

  35. A. C. Hearn, Reduce Users Manual, Ver. 3.3 (Rand Corp. CP 78, Santa Monica, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Meleshko.

Additional information

Original Russian Text © S.V. Meleshko, O. Samrum, E. Schulz.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 54, No. 1, pp. 25–39, January–February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meleshko, S.V., Sumrum, O. & Schulz, E. Application of group analysis to stochastic equations of fluid dynamics. J Appl Mech Tech Phy 54, 21–33 (2013). https://doi.org/10.1134/S0021894413010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894413010033

Keywords

Navigation