Advertisement

High-rate deformation and fracture of fiber reinforced concrete

  • A. M. Bragov
  • B. L. Karihaloo
  • Yu. V. Petrov
  • A. Yu. Konstantinov
  • D. A. Lamzin
  • A. K. Lomunov
  • I. V. Smirnov
Article

Abstract

This paper presents the results of dynamic compression and splitting-tensile tests of cardiff fiber reinforced concrete (CARDIFRC) composite using the Kolsky technique and its modification. The strength and deformation characteristics of fiber-reinforced concrete were determined experimentally at high strain rates. The mechanical characteristics were found to depend on the strain rate and stress rate. A uniform interpretation of the rate effects of fracture of the tested fiber-reinforced concrete is given on the basis of a structural-temporal approach. It is shown that the time dependences of both the compressive and tensile strengths of fiber reinforced concrete are well calculated using the incubation time criterion.

Keywords

fiber-reinforced concrete Kolsky technique compression splitting fracture incubation time dynamic strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. P. Benson and B. L. Karihaloo, “CARDIFRC-Development and Mechanical Properties. Pt 1. Development and Workability,” Mag. Concrete Res. 57, 347–352 (2005).CrossRefGoogle Scholar
  2. 2.
    S. D. P. Benson, D. Nicolaides, and B. L. Karihaloo, “CARDIFRC-Development and Mechanical Properties. Pt 2. Fibre Distribution,” Mag. Concrete Res. 57, 412–432 (2005).Google Scholar
  3. 3.
    S. D. P. Benson and B. L. Karihaloo, “CARDIFRC-Development and Mechanical Properties. Pt 3. Uniaxial Tensile Response and Other Mechanical Properties,” Mag. Concrete Res. 57, 433–443 (2005).CrossRefGoogle Scholar
  4. 4.
    D. Nicolaides, A. D. Kanellopoulos, and B. L. Karihaloo, “Fatigue Life and Self-Induced Volumetric Changes of CARDIFRC,” Mag. Concrete Res. 62, 679–683 (2010).CrossRefGoogle Scholar
  5. 5.
    Yu. V. Petrov and A. A. Utkin, “On the Dependence of the Dynamic Strength of the Loading Rate,” Fiz.-Khim. Mekh. Mater., No. 2, 38–42 (1989).Google Scholar
  6. 6.
    Yu. Petrov and N. Morozov, “On the Modeling of Fracture of Brittle Solids,” Trans. ASME, J. Appl. Mech. 61, 710–712 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    N. F. Morozov and Yu. V. Petrov, Dynamics of Fracture (Springer-Velrag, Berlin-Hidelberg-New York, 2000).zbMATHGoogle Scholar
  8. 8.
    Y. V. Petrov, N. F. Morozov, and V. I. Smirnov, “Structural Macromechanics Approach in Dynamics of Fracture,” Fatigue Fract. Eng. Mater. Struct. 26, 363–372 (2003).CrossRefGoogle Scholar
  9. 9.
    Yu. V. Petrov, “’Quantum Nature of the Dynamic Fracture of Brittle Solids,” Dokl. Akad. Nauk SSSR 321(1), 66–68 (1991).Google Scholar
  10. 10.
    Yu. V. Petrov, “Incubation Time Criterion and the Pulsed Strength of Continuous Media: Fracture, Cavitation, Electrical Breakdown,” Dokl. Akad. Nauk 395(5), 621–625 (2004).Google Scholar
  11. 11.
    T. Rodriguez, C. Navarro, and V. Sanchez-Galvez, “Splitting Tests: An Alternative to Determine the Dynamic Tensile Strength of Ceramic Materials,” J. Physique, IV 4(C8), 101–106 (1994).Google Scholar
  12. 12.
    A. M. Bragov, L. Kruszka, and A. K. Lomunov, “Static and Dynamic Properties of Dry and Wet Cement Mortar,” in Proc. of the 7th Int. Symp. on Brittle Matrix Composites “BMC-7”, Warsaw (Poland), October 13–15, 2003 (Woodhead, 2003), pp. 67–74.Google Scholar
  13. 13.
    A. M. Bragov, B. Karihaloo, A. Yu. Konstantinov, et al., “Investigation of the Mechanical Properties of Fiber-Reinforced Concrete Using the Kolsky Technique and Its Modifications,” Vestn. Nizhegor. Gos. Univ., No. 4, 123–129 (2011).Google Scholar
  14. 14.
    Y. V. Petrov, V. I. Smirnov, S. I. Krivosheev, et al., “Pulse Loading of Rocks,” in VII Khariton’s Topical Scientific Readings, Proc. of the Int. Conf., Sarov Russia, March 14–18, 2005 (VNIIEF, Sarov, 2005), pp. 189–190.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. M. Bragov
    • 1
    • 2
  • B. L. Karihaloo
    • 3
  • Yu. V. Petrov
    • 4
  • A. Yu. Konstantinov
    • 1
  • D. A. Lamzin
    • 1
    • 2
  • A. K. Lomunov
    • 1
    • 2
  • I. V. Smirnov
    • 4
  1. 1.Institute of MechanicsLobachevsky Nizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.State University of Architecture and Civil Engineering UniversityNizhny NovgorodRussia
  3. 3.University of CardiffCardiffUK
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations