Skip to main content
Log in

Surface topography formation in a region of plate collision: Mathematical modeling

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The collision of earth’s crustal plates is modeled mathematically based on a numerical solution of the equations of deformable solid mechanics using a finite element method with the MSC software. The interaction of the plates with each other and with the mantle is described by the solution of the contact problem with an unknown contact boundary between the solids considered. The mantle material is assumed to be ideal elastic-plastic with the Huber-Mises yield surface, and the properties of the plate material are described using an elastic-plastic model with the Drucker-Prager parabolic yield function which takes into account fracture in the tensile stress region. The results of the mathematical modeling show that the surface profiles of the plates in the region of their collision are consistent, both qualitatively and quantitatively, to the surface topography observed in nature under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Artyushkov, Physical Tectonics (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  2. V. I. Lobkovskii, A. M. Nikishin, and V. E. Khain, Modern Problems of Geotectonics and Geodynamics (Nauchnyi Mir, 2004) [in Russian].

  3. L. N. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (Izd. Geo, Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  4. B. L. N. Kennett and H.-P. Bunge, Geophysical Continua (Cambridge Univ. Press, Cambridge, 2008).

    Book  MATH  Google Scholar 

  5. S. D. King, “Subduction Zones: Observations and Geodynamic Models,” Phys. Earth Planet. Int. 127, 9–24 (2001).

    Article  ADS  Google Scholar 

  6. C. Doglioni, E. Carminato, M. Cuffaro, and D. Scrocca, “Subduction Kinematics and Dynamic Constraints,” Earth-Sci. Rev. 83, 125–175 (2007).

    Article  ADS  Google Scholar 

  7. N. I. Seliverstov, Geodynamics of the Junction Zones of the Kurily-Kamchatka and Aleutian Island Arcs (Izd. Kam. Gos. Univ., Petropavlovsk-Kamchatsky, 2009) [in Russian].

    Google Scholar 

  8. A. I. Shemenda, Subduction: Insights from Physical Modeling (Kluwer, Dordrecht, 1994).

    Google Scholar 

  9. E. Willingshofer and D. Sokoutis, “Decoupling along Plate Boundaries: Key Variable Controlling the Mode of Deformation and the Geometry of Collisional Mountain Belts,” Geology 37(1), 39–42 (2009).

    Article  Google Scholar 

  10. S. N. Korobeinikov, P. O. Polyansky, I. I. Likhanov, et al. “Mathematical Modeling of Overthrusting Fault As a Cause of Formation of Andalusite-Kyanite Metamorphic Zoning in the Yenisei Ridge,” Dokl. Akad. Nauk 408(4), 512–516 (2006) [Dokl. Earth Sci. 408 (4), 652–656 (2006)].

    Google Scholar 

  11. S. N. Korobeinikov V. V. Reverdatto, O. P. Polyansky, et al., “Estimation of Geometric Nonlinearity in the Mathematical Modeling of Tectonic Processes,” Vychisl. Metod. Programm. 7(2), 130–145 (2006).

    Google Scholar 

  12. S. N. Korobeinikov, P. O. Polyansky, V. G. Sverdlova, et al., “Computer Modeling of Underthrusting and Subduction under Conditions of Gabbro-Eclogite Transition in the Mantle,” Dokl. Akad. Nauk 20(5), 654–658 (2008) [Dokl. Earth Sci. 421 (5), 724–728 (2008)].

    Google Scholar 

  13. S. N. Korobeinikov V. V. Reverdatto, O. P. Polyansky, et al., “Computer Simulation of Underthrusting and Subduction Due to Collision of Slabs,” Sib. Zh. Vychisl. Mat. 12(1), 71–90 (2009) [Num. Anal. Appl. 2 (1), 58–73 (2009)].

    MATH  Google Scholar 

  14. D. P. Polansky, S. N. Korobeynikov, V. G. Sverdlova, et al., “The Influence of Crustal Rheology on Plate Subduction Based on Numerical Modeling Results, Mathematical Modelling,” Dokl. Akad. Nauk 430(4), 518–522 (2010) [Dokl. Earth Sci. 430 (2), 158–162 (2010)].

    Google Scholar 

  15. S. N. Korobeinikov, V. V. Reverdatto, O. P. Polyansky, et al. “Influence of the Choice of a Rheological Law on Computer Simulation Results of Slab Subduction,” Sib. Zh. Vychisl. Mat. 14(1), 71–90 (2011) [Num. Anal. Appl. 4 (1), 56–70 (2011)].

    Google Scholar 

  16. Zh. Wang, B. Xu, Y. Zhou, et al., “Two-Dimensional Numerical Modelling Research on Continent Subduction Dynamics,” Acta Geologica Sinica 78(1), 313–319 (2004).

    Google Scholar 

  17. F. A. Capitano, G. Morra, and S. Goes, “Dynamic Models of Downgoing Plate-Buoyancy Driven Subduction: Subduction Motions and Energy Dissipation,” Earth Planet. Sci. Lett. 262, 284–297 (2007).

    Article  ADS  Google Scholar 

  18. F. A. Capitano, S. Goes, G. Morra, and D. Giardini, “Signatures of Downgoing Plate-Buoyancy Driven Subductionin Motions and Seismic Coupling at Major Subduction Zones,” Earth Planet. Sci. Lett. 262, 298–306 (2007).

    Article  ADS  Google Scholar 

  19. S. Zlotnik, P. Diez, M. Fernandez, and J. Verges, “Numerical Modelling of Tectonic Plates Subduction Using X-FEM,” Comput. Methods Appl. Mech. Eng. 196, 4283–4293 (2007).

    Article  ADS  MATH  Google Scholar 

  20. D. F. Keppie, C. A. Currie, and C. Warren, “Subduction ErosionModes: Comparing Finite Element Numerical Models with the Geological Record,” Earth Planet. Sci. Lett. 287, 241–254 (2009).

    Article  ADS  Google Scholar 

  21. Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  22. MARC Users Guide. V. A. Theory and Users Information (MSC.Software Corp., Santa Ana, 2005).

  23. K.-J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, 1996).

    Google Scholar 

  24. O. C. Zeinkiewicz and R. L. Taylor, The Finite Element Method (Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

  25. S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  26. A. I. Golovanov amd D. V. Berezhnoi, Finite Element Method in the Mechanics of Deformable Solids (DAS, Kazan’, 2001) [in Russian].

    Google Scholar 

  27. A. Curnier, Computational Methods in Solid Mechanics (Kluwer, Dordrecht, 1994).

    Book  MATH  Google Scholar 

  28. J. Bonnet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  29. M. Kleiber, Incremental Finite Element Modelling in Non-Linear Solid Mechanics (Ellis Horwood, Chichester, 1989).

    Google Scholar 

  30. G. Strang and G. J. Fix, An Analysis of the Finite Element Method (Prentice Hall, Englewood Cliffs, 1973).

    MATH  Google Scholar 

  31. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, Englewood Cliffs, 1987).

    MATH  Google Scholar 

  32. R. A. Hill, “A General Theory of Uniqueness and Stability in Elastic-Plastic Solids,” J. Mech. Phys. Solids 6(3), 236–249 (1958).

    Article  ADS  MATH  Google Scholar 

  33. R. M. McMeeking and J. R. Rice, “Finite Element Formulations for Problems of Large Elastic-Plastic Deformation,” Int. J. Solids Struct. 11, 601–616 (1975).

    Article  MATH  Google Scholar 

  34. A. Nadai, Theory of Flow and Fracture of Solids (McGraw Hill, New York, 1950).

    Google Scholar 

  35. A. P. Boresi, R. J. Schmidt, O. M. Sidebottom, Advanced Mechanics of Materials (John Wiley and Sons, New York, 1993).

    Google Scholar 

  36. P. Duxbury and X. Li, “Development of Elasto-plastic Material Models in a Natural Coordinate System,” Comput. Methods Appl. Mech. Eng. 135, 283–306 (1996).

    Article  ADS  MATH  Google Scholar 

  37. M. Kojić and K.-J. Bathe, Inelastic Analysis of Solids and Structures (Springer, Berlin, 2005).

    Google Scholar 

  38. P. V. Makarov, I. Yu. Smolin, Yu. P. Stefanov, et al., Nonlinear Mechanics of Geomaterials and Geoenvironments (Izd. Geo, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  39. S. J. Hiermaier, Structures under Crush and Impact: Continuum Mechanics, Discretization and Experimental Characterization (Springer, New York, 2008).

    Google Scholar 

  40. F. Irgens, Continuum Mechanics (Springer, Berlin, 2008).

    Google Scholar 

  41. C. D. Brown and R. J. Phillips, “Crust-Mantle Decoupling by Flexure of Continental Litisphere,” J. Geophys. Res. 103,(B6), 13.221–13.237 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Korobeinikov.

Additional information

Original Russian Text © S.N. Korobeinikov, V.V. Reverdatto, O.P. Polyanskii, V.G. Sverdlova, and A.V. Babichev.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 53, No. 4, pp. 124–137, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobeinikov, S.N., Reverdatto, V.V., Polyanskii, O.P. et al. Surface topography formation in a region of plate collision: Mathematical modeling. J Appl Mech Tech Phy 53, 577–588 (2012). https://doi.org/10.1134/S0021894412040128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894412040128

Keywords

Navigation