Skip to main content
Log in

Nonlinear spatial bending of shear-deformable curvilinear rods

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A finite element is proposed for analyzing nonlinear deformation and stability of three-dimensional rods at arbitrarily large elastic displacements. Timoshenko’s model is used for taking transverse shear strains into account. The accuracy and convergence of numerical solutions are studied by an example of problems of nonlinear bending of curvilinear rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Novozhilov, Fundamentals of the Nonlinear Elasticity Theory (Gostekhteorizdat, Moscow-Leningrad, 1948) [in Russian].

    Google Scholar 

  2. V. A. Svetlitskii, Mechanics of Beams (Vysshaya Shkola, Moscow, 1987) [in Russian].

    Google Scholar 

  3. S. S. Antman, Nonlinear Problems of Elasticity (Springer, Berlin, 1995).

    MATH  Google Scholar 

  4. Y. Goto, T. Yoshimitsu, and M. Obata, “Elliptic Integral Solutions of Plane Elastica with Axial and Shear Deformations,” Int. J. Solids Structures 26(4), 375–390 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. I. Shkutin, “Numerical Analysis of the Branched Forms of Bending for a Rod,” Prikl. Mekh. Tekh. Fiz. 42(2), 141–147 (2001) [J. Appl. Mech. Tech. Phys. 42 (2), 310–315 (2001)].

    MATH  Google Scholar 

  6. L. I. Shkutin, “Numerical Analysis of Branched Shapes of Arches in Bending,” Prikl. Mekh. Tekh. Fiz. 42(4), 155–160 (2001) [J. Appl. Mech. Tech. Phys. 42 (4), 696–700 (2001)].

    MATH  Google Scholar 

  7. K. J. Bathe and S. Bolourchi, “Large Displacement Analysis of Three Dimensional Beam Structures,” Int. J. Numer. Methods Eng. 14, 961–986 (1979).

    Article  MATH  Google Scholar 

  8. P. F. Pai, T. J. Anderson, and E. A. Wheater, “Large-Deformation Tests and Total-Lagrangian Finite-Element Analyses of Flexible Beams,” Int. J. Solids Structures 37(21), 2951–2980 (2000).

    Article  MATH  Google Scholar 

  9. J.-M. Battini and C. Pacoste, “Co-Rotational Beam Elements with Warping Effects in Instability Problems,” Comput. Methods Appl. Mech. Eng. 191, 1755–1789 (2002).

    Article  ADS  MATH  Google Scholar 

  10. K.-M. Hsiao, H.-J. Horng, and Y.-R. Chen, “A Corotational Procedure that Handles Large Rotations of Spatial Beam Structures,” Comput. Structures 27(6), 769–781 (1987).

    Article  Google Scholar 

  11. M. A. Crisfield, “A Consistent Co-Rotational Formulation for Non-Linear, Three-Dimensional, Beam-Elements,” Comput. Methods Appl. Mech. Eng. 81, 131–150 (1990).

    Article  ADS  MATH  Google Scholar 

  12. V. V. Kuznetsov and S. V. Levyakov, “Kinematic Groups and Finite Element in Mechanics of Deformable Solids,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 67–82 (1994).

  13. V. V. Kuznetsov and S. V. Levyakov, “Multivalued Solutions of the Spatial Problems of Nonlinear Deformation of This Curvilinear Rods,” Prikl. Mekh. Tekh. Fiz. 39(2), 141–149 (1998) [J. Appl. Mech. Tech. Phys. 39 (2), 282–289 (1998)].

    MathSciNet  MATH  Google Scholar 

  14. O. Zienkiewicz, The Finite Element Method in Engineering Science (Wiley, New York, 1971).

    MATH  Google Scholar 

  15. Y. B. Yang and M. S. Shieh, “Solution Method for Nonlinear Problems with Multiple Critical Points,” AIAA J. 28, 2110–2116 (1990).

    Article  ADS  Google Scholar 

  16. A. Dutta and D. W. White, “Large Displacement Formulation of a Three-Dimensional Beam Element with Cross-Sectional Warping,” Comput. Structures 45(1), 9–24 (1992).

    Article  ADS  MATH  Google Scholar 

  17. J. C. Simo and L. Vu-Quoc, “A Three-Dimensional Finite-Strain Rod Model. Part 2. Computational Aspects,” Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986).

    Article  ADS  MATH  Google Scholar 

  18. A. Ibrahimbegovic, “On Finite Element Implementation of Geometrically Nonlinear Reissner’s Beam Theory: Three-Dimensional Curved Beam Elements,” Comput. Methods Appl. Mech. Eng. 122, 11–26 (1995).

    Article  ADS  MATH  Google Scholar 

  19. A. S. Volmir, Stability of Deformable Systems (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  20. D. H. Hodges and D. A. Peters, “On the Lateral Buckling of Uniform Slender Cantilever Beams,” Int. J. Solids Structures 11(12), 1269–1280 (1975).

    Article  MATH  Google Scholar 

  21. E. Reissner, “Lateral Buckling of Beams,” Comput. Structures 33(5), 1289–1306 (1989).

    Article  MATH  Google Scholar 

  22. P. F. Pai and A. N. Palazotto, “Large-Deformation Analysis of Flexible Beams,” Int. J. Solids Structures 33(9), 1335–1353 (1996).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Levyakov.

Additional information

Original Russian Text © S.V. Levyakov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 53, No. 2, pp. 128–136, March–April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levyakov, S.V. Nonlinear spatial bending of shear-deformable curvilinear rods. J Appl Mech Tech Phy 53, 258–265 (2012). https://doi.org/10.1134/S0021894412020149

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894412020149

Keywords

Navigation