Skip to main content
Log in

Opening of New Windows to the Early Universe by Means of Multi-Messenger Astronomy (Brief Review)

  • ASTROPHYSICS AND COSMOLOGY
  • Published:
JETP Letters Aims and scope Submit manuscript

The current situation in cosmology and particle physics, which are two closely related fields of fundamental physics, is unique. The Standard Model of particle physics excellently reproduces all existing experimental data except for neutrino oscillations. Similarly, the comparison of the standard cosmological model with astronomical observations indicates that we well understand the evolution of the Universe from its “birth” to the present. However, to understand mechanisms of numerous cosmological phenomena, it is certainly necessary to go beyond the Standard Model. These are primarily the problems of dark matter and dark energy, generation of the baryon asymmetry of the Universe, and the mechanism of inflation expansion. The problem of the appearance of cosmic magnetic fields and the recent problem of the existence of massive black holes whose number in the Universe is much larger than the expected values are among less known, but also very important problems in conventional cosmology and astrophysics. To understand and possibly solve these problems, it is very important to provide deep insight into the Universe and to obtain data on physical processes at the early stages of the cosmological evolution. Multi-messenger observations involving all possible messengers (“windows”) provide a powerful tool for this. In addition to conventional detection of electromagnetic radiation in all bands and all types of cosmic rays, the observations of gravitational waves have recently opened a new window. A complex analysis of information obtained from various astronomical data has been performed in our works supported by the Russian Science Foundation (project no. 20-42-09010 “Opening of New Windows to the Early Universe by Means of Multi-Messenger Astronomy”). In particular, the characteristics of cosmic magnetic fields and possible mechanisms of their appearance have been studied and the observed manifestations of primary black holes have been examined using the data on gravitational waves observed at the LIGO/Virgo/KAGRA interferometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. R. Abbott, T. D. Abbott, F. Acernese, et al. (LIGO Sci. Collab., Virgo Collab., and KAGRA Collab.), Phys. Rev. X 13, 011048 (2023).

  2. S. Blinnikov, A. Dolgov, N. K. Porayko, and K. Postnov, J. Cosmol. Astropart. Phys., No. 11, 036 (2016).

  3. A. Dolgov and J. Silk, Phys. Rev. D 47, 4244 (1993).

    Article  ADS  Google Scholar 

  4. A. D. Dolgov, M. Kawasaki, and N. Kevlishvili, Nucl. Phys. B 807, 229 (2009).

    Article  ADS  Google Scholar 

  5. A. Dolgov and K. Postnov, J. Cosmol. Astropart. Phys., No. 09, 018 (2017).

  6. A. Dolgov and K. Postnov, J. Cosmol. Astropart. Phys., No. 07, 063 (2020).

  7. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  8. E. V. Arbuzova, Int. J. Mod. Phys. D 30, 2140002 (2021).

  9. E. Arbuzova, Moscow Univ. Phys. Bull. 77, 288 (2022).

    Article  ADS  Google Scholar 

  10. A. Monna, S. Seitz, N. Greisel, et al., Mon. Not. R. Astron. Soc. 438, 1417 (2014).

    Article  ADS  Google Scholar 

  11. W. Zheng, A. Zitrin, L. Infante, N. Laporte, X. Huang, J. Moustakas, H. C. Ford, X. Shu, J. Wang, J. M. Diego, F. E. Bauer, P. Troncoso Iribarren, T. Broadhurst, and A. Molino, Astrophys. J. 836, 210 (2017).

    Article  ADS  Google Scholar 

  12. P. A. Oesch, G. Brammer, P. G. van Dokkum, et al., Astrophys. J. 819, 129 (2016).

    Article  ADS  Google Scholar 

  13. S. L. Finkelstein, M. B. Bagley, H. C. Ferguson, et al., Astrophys. J. Lett. 946, L13 (2023).

    Article  ADS  Google Scholar 

  14. Y. Harikane, M. Ouchi, M. Oguri, Y. Ono, K. Nakajima, Y. Isobe, H. Umeda, K. Mawatari, and Y. Zhang, Astrophys. J. Suppl. 265, 5 (2023).

    Article  Google Scholar 

  15. M. Castellano, A. Fontana, T. Treu, et al., Astrophys. J. Lett. 938, L15 (2022).

    Article  ADS  Google Scholar 

  16. P. Santini, A. Fontana, M. Castellano, et al., Astrophys. J. Lett. 942, L27 (2023).

    Article  ADS  Google Scholar 

  17. R. Endsley, D. P. Stark, J. Lyu, F. Wang, J. Yang, X. Fan, R. Smit, R. Bouwens, K. Hainline, and S. Schouws, Mon. Not. R. Astron. Soc. 520, 4609 (2023).

    Article  ADS  Google Scholar 

  18. A. D. Dolgov, Phys. Usp. 61, 115 (2018).

    Article  ADS  Google Scholar 

  19. C. Alcock, R. A. Allsman, D. R. Alves, et al. (The MACHO Collab.), Astrophys. J. 542, 281 (2000).

    Article  ADS  Google Scholar 

  20. D. P. Bennett, Astrophys. J. 633, 906 (2005).

    Article  ADS  Google Scholar 

  21. S. I. Blinnikov, A. D. Dolgov, and K. A. Postnov, Phys. Rev. D 92, 023516 (2015).

  22. S. Mao, Res. Astron. Astrophys. 12, 947 (2012).

    Article  ADS  Google Scholar 

  23. J. L. Han, Ann. Rev. Astron. Astrophys. 55, 111 (2017).

    Article  ADS  Google Scholar 

  24. K. Dolag, D. Grasso, V. Springel, and I. Tkachev, J. Cosmol. Astropart. Phys., No. 01, 009 (2005).

  25. F. Marinacci, M. Vogelsberger, R. Pakmor, P. Torrey, V. Springel, L. Hernquist, D. Nelson, R. Weinberger, A. Pillepich, J. Naiman, and S. Genel, Mon. Not. R. Astron. Soc. 480, 5113 (2018).

    ADS  Google Scholar 

  26. J. Jasche and B. D. Wandelt, Mon. Not. R. Astron. Soc. 432, 894 (2013).

    Article  ADS  Google Scholar 

  27. J. Jasche and G. Lavaux, Astron. Astrophys. 625, A64 (2019).

    Article  ADS  Google Scholar 

  28. M. Joyce and M. E. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997).

    Article  ADS  Google Scholar 

  29. R. Banerjee and K. Jedamzik, Phys. Rev. D 70, 123003 (2004).

  30. M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 62, 103512 (2000).

  31. R. Teyssier, Astron. Astrophys. 385, 337 (2002).

    Article  ADS  Google Scholar 

  32. S. Fromang, P. Hennebelle, and R. Teyssier, in SF2A-2005: Semaine de l’Astrophysique Francaise, Ed. by F. Casoli, T. Contini, J. M. Hameury, and L. Pagani (EDP Sciences, Les Ulis, 2005), p. 743.

    Google Scholar 

  33. A. Korochkin, A. Neronov, G. Lavaux, M. Ramsoy, and D. Semikoz, J. Exp. Theor. Phys. 134, 498 (2022).

    Article  ADS  Google Scholar 

  34. K. Bondarenko, A. Boyarsky, A. Korochkin, A. Neronov, D. Semikoz, and A. Sokolenko, Astron. Astrophys. 660, A80 (2022).

    Article  ADS  Google Scholar 

  35. O. Kalashev, A. Korochkin, A. Neronov, and D. Semikoz, Astron. Astrophys. 675, A132 (2023).

    Article  ADS  Google Scholar 

  36. V. Berezinsky and O. Kalashev, Phys. Rev. D 94, 023007 (2016).

  37. R. Alves Batista, J. Becker Tjus, J. Dörner, et al., J. Cosmol. Astropart. Phys., No. 09, 035 (2022).

  38. M. Blytt, M. Kachelrieß, and S. Ostapchenko, Comput. Phys. Commun. 252, 107163 (2020).

  39. K. Jedamzik and L. Pogosian, Phys. Rev. Lett. 125, 181302 (2020).

  40. H. A. G. Cruz, T. Adi, J. Flitter, M. Kamionkowski, and E. D. Kovetz, Phys. Rev. D 109, 023518 (2024).

  41. A. Neronov and I. Vovk, Science (Washington, DC, U. S.) 328, 73 (2010).

    Article  ADS  Google Scholar 

  42. M. Ackermann, M. Ajello, L. Baldini, et al. (Fermi-LAT Collab., and J. Biteau), Astrophys. J. Suppl. 237 (2), 32 (2018).

    Article  ADS  Google Scholar 

  43. V. A. Acciari, I. Agudo, T. Aniello, et al. (MAGIC Collab., A. Neronov, D. Semikoz, and A. Korochkin), Astron. Astrophys. 670, A145 (2023).

    Article  Google Scholar 

  44. K. Dolgikh, A. Korochkin, G. Rubtsov, D. Semikoz, and I. Tkachev, J. Exp. Theor. Phys. 136, 704 (2023).

    Article  ADS  Google Scholar 

  45. K. Dolgikh, A. Korochkin, G. Rubtsov, D. Semikoz, and I. Tkachev, arXiv: 2312.06391 [astro-ph.HE].

  46. E. V. Arbuzova, A. D. Dolgov, and L. A. Panasenko, J. Exp. Theor. Phys. 135, 304 (2022).

    Article  ADS  Google Scholar 

  47. H. T. Cho and A. D. Speliotopoulos, Phys. Rev. D 52, 5445 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  48. H. Iguchi, K.-i. Nakao, and T. Harada, Phys. Rev. D 57, 7262 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  49. F. Di Gioia and G. Montani, Eur. Phys. J. C 79, 921 (2019).

    Article  ADS  Google Scholar 

  50. B. Wilson and C. C. Dyer, Gen. Relat. Grav. 41, 1725 (2009).

    Article  ADS  Google Scholar 

  51. A. D. Dolgov, L. A. Panasenko, and V. A. Bochko, Universe 10, 7 (2023).

    Article  ADS  Google Scholar 

  52. E. V. Arbuzova, A. D. Dolgov, and R. S. Singh, Eur. Phys. J. C 80, 1047 (2020).

    Article  ADS  Google Scholar 

  53. O. E. Kalashev, M. Y. Kuznetsov, and Y. V. Zhezher, J. Cosmol. Astropart. Phys., No. 10, 039 (2019).

  54. R. L. Workman, V. D. Burkert, V. Crede, et al. (Part. Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

  55. A. Vilenkin, Phys. Rev. D 20, 373 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  56. B. Leaute and B. Linet, Gen. Rel. Grav. 17, 783 (1985).

    Article  ADS  Google Scholar 

  57. A. D. Dolgov, H. Maeda, and T. Torii, arXiv: hep-ph/0210267.

  58. A. D. Dolgov and K. S. Gudkova, Phys. Lett. B 810, 135844 (2020).

  59. V. F. Shvartsman, Astrophysics 6, 159 (1970).

    Article  ADS  Google Scholar 

  60. R. Turolla, S. Zane, A. Treves, and A. Illarionov, Astrophys. J. 482, 377 (1997).

    Article  ADS  Google Scholar 

  61. S. Zane, R. Turolla, and A. Treves, Astrophys. J. 501, 258 (1998).

    Article  ADS  Google Scholar 

  62. C. Bambi, A. D. Dolgov, and A. A. Petrov, J. Cosmol. Astropart. Phys., No. 09, 013 (2009).

  63. A. D. Dolgov and A. S. Rudenko, arXiv: 2308.01689 [hep-ph].

  64. C. Caprini, S. Biller, and P. G. Ferreira, J. Cosmol. Astropart. Phys., No. 02, 006 (2005).

  65. A. D. Dolgov and N. A. Pozdnyakov, Phys. Rev. D 104, 083524 (2021).

  66. A. D. Sakharov, JETP Lett. 5, 24 (1967).

    ADS  Google Scholar 

  67. Y. B. Zeldovich, Adv. Astron. Astrophys. 3, 241 (1965).

    Article  ADS  Google Scholar 

  68. Y. B. Zel’dovich, L. B. Okun’, and S. B. Pikel’ner, Sov. Phys. Usp. 8, 702 (1966).

    Article  ADS  Google Scholar 

  69. A. D. Dolgov, A. G. Kuranov, N. A. Mitichkin, S. Porey, K. A. Postnov, O. S. Sazhina, and I. V. Simkin, J. Cosmol. Astropart. Phys., No. 12, 017 (2020).

  70. K. Postnov, A. Dolgov, N. Mitichkin, and I. Simkin, arXiv: 2101.02475 [astro-ph.HE].

  71. K. A. Postnov and N. A. Mitichkin, Phys. Part. Nucl. 54, 884 (2023).

    Article  Google Scholar 

  72. A. E. Bondar, S. I. Blinnikov, A. M. Bykov, A. D. Dolgov, and K. A. Postnov, J. Cosmol. Astropart. Phys., No. 03, 009 (2022).

  73. A. D. Dolgov, arXiv: 2310.00671 [astro-ph.CO].

  74. S. Dupourqué, L. Tibaldo, and P. von Ballmoos, Phys. Rev. D 103, 083016 (2021).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-42-09010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Dolgov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbuzova, E.V., Dolgikh, K.A., Dolgov, A.D. et al. Opening of New Windows to the Early Universe by Means of Multi-Messenger Astronomy (Brief Review). Jetp Lett. 119, 485–494 (2024). https://doi.org/10.1134/S0021364024600629

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364024600629

Navigation