Skip to main content
Log in

Decay of Solitons in the Electroconvective Structure of a Nematic Liquid Crystal

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Features of the dynamics of topological defects in an electroconvective structure formed in a π/2-twisted nematic liquid crystal have been studied. The electroconvective structure (Williams domains) is a system of rolls similar to the system of convective cells in thermal convection. Hydrodynamic flows in rolls of the twisted nematic liquid crystal are helicoidal because the axial velocity component existing in addition to the tangential component has opposite directions in the neighboring rolls. This feature is responsible for the formation of stable localized extended objects—linear defects—oriented normally to Williams domains. The continuity condition for a helicoidal flow of an anisotropic liquid in twisted nematic liquid crystals prevents the decay of a linear defect into single dislocations. The length of the linear defect and the number of dislocations in it are controlled by an ac voltage applied to a liquid crystal cell. In contrast to the case of planar orientation, where linear defects decay into single dislocations with increasing applied voltage, zigzag oscillations appear in this case, but the structure of domains remains stationary. The boundaries between zig and zag regions in the core of the linear defect are dislocations with the topological charges S = +1 and –1. An “elementary” decay of a dislocation with the topological charge S = +1 (kink) into the dislocation with S = –1 (antikink) and two dislocations the topological charges S = +1 has been found for the first time in the linear defect of a certain length. The decay of the topological defect is possibly due to the appearance of the local instability of the orientational twist mode of the director n in the defect core caused by the critical growth of hydrodynamic fluctuations with increasing applied voltage. It has been shown that the detected decay of the topological soliton is qualitatively well described by the perturbed sine-Gordon eq-uation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. G. Toulouse and M. Kleman, J. Phys. Lett. 37, 149 (1976).

    Article  Google Scholar 

  2. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).

    Article  ADS  Google Scholar 

  3. N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).

    Article  ADS  CAS  Google Scholar 

  4. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  CAS  Google Scholar 

  5. A. Vilenkin and E. P. Shellard, Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  6. P. M. Chaikin, T. C. Lubensky, and T. A. Witten, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  7. O. D. Lavrentovich, Liq. Cryst. 24, 117 (1998).

    Article  CAS  Google Scholar 

  8. H.-R. Trebin, Liq. Cryst. 24, 127 (1998).

    Article  CAS  Google Scholar 

  9. G. A. Malygin, Phys. Solid State 43, 854 (2001).

    Article  ADS  CAS  Google Scholar 

  10. M. Kleman and J. Friedel, Rev. Mod. Phys. 80, 61 (2008).

    Article  ADS  CAS  Google Scholar 

  11. I. Chuang, R. Durrer, N. Turok, and B. Yurke, Science (Washington, DC, U. S.) 251, 1336 (1991).

    Article  ADS  CAS  Google Scholar 

  12. M. Kim and F. Serra, Adv. Opt. Mater. 8, 1900991 (2020).

  13. J. Brox, P. Kiefer, M. Bujak, T. Schaetz, and H. Landa, Phys. Rev. Lett. 119, 153602 (2017).

  14. I. S. Aranson, Phys. Usp. 62, 892 (2019).

    Article  ADS  CAS  Google Scholar 

  15. S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach Sci., New York, 1991).

  16. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1994).

    Google Scholar 

  17. P. V. Dolganov, N. S. Shuravin, V. K. Dolganov, and E. I. Kats, JETP Lett. 101, 453 (2015).

    Article  ADS  CAS  Google Scholar 

  18. S. Digal, R. Ray, and A. M. Srivastava, Phys. Rev. Lett. 83, 5030 (1999).

    Article  ADS  CAS  Google Scholar 

  19. H. Mukai, P. R. G. Fernandes, B. F. de Oliveira, and G. S. Dias, Phys. Rev. E 75, 061704 (2007).

  20. J.-P. Eckmann, G. Goren, and I. Procaccia, Phys. Rev. A 44, R805 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. E. Bodenschatz, W. Pesch, and L. Kramer, Phys. D (Amsterdam, Neth.) 32, 135 (1988).

  22. S. Kai, N. Chizumi, and M. Kohno, Phys. Rev. A 40, 6554 (1989).

    Article  ADS  CAS  Google Scholar 

  23. G. Goren, I. Procaccia, and V. Steinberg, Phys. Rev. Lett. 63, 1237 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. S. Rasenat, V. Steinberg, and I. Rehberg, Phys. Rev. A 42, 5998 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. E. Bodenschatz, W. Pesch, and L. Kramer, J. Stat. Phys. 64, 1007 (1991).

    Article  ADS  Google Scholar 

  26. A. Joets and R. Ribotta, J. Stat. Phys. 64, 981 (1991).

    Article  ADS  Google Scholar 

  27. E. S. Pikina, A. R. Mupatov, E. I. Kats, and V. V. Lebedev, J. Exp. Theor. Phys. 137, 114 (2023).

    Article  ADS  CAS  Google Scholar 

  28. O. M. Braun and Yu. S. Kivshar’, The Frenkel–Kontorova Model: Concepts, Methods, and Applications (Fizmatlit, Moscow, 2006; Springer, Berlin, 2004).

  29. M. Lowe and J. P. Gollub, Phys. Rev. A 31, 3893 (1985).

    Article  ADS  CAS  Google Scholar 

  30. L. Lam and J. Prost, Solitons in Liquid Crystals (Springer, New York, 1992).

    Book  Google Scholar 

  31. B.-X. Li, V. Borshch, R.-L. Xiao, S. Paladugu, T. Turiv, S. V. Shiyanovskii, and O. D. Lavrentovich, Nat. Commun. 9, 2912 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. O. A. Skaldin, V. A. Delev, E. S. Shikhovtseva, E. S. Batyrshin, and Yu. A. Lebedev, JETP Lett. 93, 388 (2011).

    Article  ADS  CAS  Google Scholar 

  33. O. A. Skaldin, V. A. Delev, E. S. Shikhovtseva, Yu. A. Lebedev, and E. S. Batyrshin, J. Exp. Theor. Phys. 121, 1082 (2015).

    Article  ADS  CAS  Google Scholar 

  34. V. A. Delev, V. N. Nazarov, O. A. Scaldin, E. S. Batyrshin, and E. G. Ekomasov, JETP Lett. 110, 607 (2019).

    Article  ADS  CAS  Google Scholar 

  35. S. Aya and F. Araoka, Nat. Commun. 11, 3248 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Shen and I. Dierking, Commun. Phys. 3, 14 (2020).

    Article  CAS  Google Scholar 

  37. Yu. Shen and I. Dierking, Crystals 12, 1 (2022).

    Google Scholar 

  38. V. A. Delev, JETP Lett. 113, 23 (2021).

    Article  ADS  CAS  Google Scholar 

  39. V. A. Delev and A. P. Krekhov, J. Exp. Theor. Phys. 125, 1208 (2017).

    Article  ADS  CAS  Google Scholar 

  40. A. Hertrich, A. P. Krekhov, and O. A. Scaldin, J. Phys. II 4, 239 (1994).

    Google Scholar 

  41. V. A. Delev, P. Toth, and A. P. Krekhov, Mol. Cryst. Liq. Cryst. 351, 179 (2000).

    Article  CAS  Google Scholar 

  42. F. H. Busse and E. W. Bolton, J. Fluid. Mech. 146, 115 (1984).

    Article  ADS  Google Scholar 

  43. A. B. Volyntsev and A. V. Ratt, Vestn. Perm. Univ., Fiz., No. 1, 3 (2005).

  44. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  45. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  46. A. I. Berdyugin, N. Xin, H. Gao, et al., Science (Washington, DC, U. S.) 375, 430 (2022).

    Article  ADS  CAS  Google Scholar 

  47. J. A. Gonzalez, A. Bellorin, and L. E. Guerrero, Phys. Rev. E 65, 065601 (2002).

  48. J. A. Gonzalez, A. Bellorin, and L. E. Guerrero, Chaos. Solitons Fractals 33, 143 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  49. Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989).

    Article  ADS  Google Scholar 

  50. P. Bak and A. Brazovsky, Phys. Rev. B 17, 3154 (1978).

    Article  ADS  CAS  Google Scholar 

  51. D. P. Zipes and J. Jalife, Cardiac Electrophysiology: From Cell to Bedside (W. B. Saunder, New York, 2000).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. NIOKTR I223011200702-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Delev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delev, V.A., Scaldin, O.A. & Timirov, Y.I. Decay of Solitons in the Electroconvective Structure of a Nematic Liquid Crystal. Jetp Lett. 119, 58–63 (2024). https://doi.org/10.1134/S0021364023603767

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603767

Navigation