Skip to main content
Log in

Multiple Increase in the Efficiency of Picosecond Stimulated Raman Scattering Excited by Bessel Laser Beams in Water

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Stimulated Raman scattering of second harmonic picosecond pulses (60 ps, 532 nm) of an Nd3+:YAG laser in water when focusing a Bessel beam behind a conical concentrator with the displacement of the beam caustic through the free surface is studied. The generation of two Stokes (650 and 836 nm) and two anti-Stokes (390 and 450 nm) components of stimulated Raman scattering with an axisymmetric ring beam structure in the cross section is achieved. A significant decrease in the spectral bandwidth of stretching OH vibrations of water molecules in the first circular Stokes component of forward stimulated Raman scattering has been detected (to ~70 cm–1 compared to ~400 cm–1 for spontaneous Raman scattering). For the first time, a fourfold increase in the efficiency of converting the pump pulse energy into the first Stokes component of forward stimulated Raman scattering has been achieved using Bessel beams for excitation instead of Gaussian beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. Yu. Pyatyshev, A. V. Skrabatun, and A. I. Vodchits, Laser Phys. 31, 095401 (2021).

  2. Y. Ganot and I. Bar, Appl. Phys. Lett. 107, 131108 (2015).

  3. Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, Opt. Lett. 40, 1434 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. S. M. Pershin, A. I. Vodchits, I. A. Khodasevich, V. A. Orlovich, A. D. Kudryavtseva, and N. V. Chernega, Quantum Electron. 52, 283 (2022).

    Article  ADS  CAS  Google Scholar 

  5. H. Yui, T. Tomai, M. Sawada, and K. Terashima, Appl. Phys. Lett. 99, 091504 (2011).

  6. B. Hafizi, J. P. Palasttro, J. R. Penano, T. G. Jones, L. A. Johnson, M. H. Helle, D. Kaganovich, Y. H. Chen, and A. B. Stamm, J. Opt. Soc. Am. B 33, 2062 (2016).

    Article  ADS  CAS  Google Scholar 

  7. R. V. Chulkov, P. A. Apanasevich, and V. A. Orlovich, J. Opt. 19, 015503 (2017).

  8. S. N. Khonina, N. L. Kazanskiy, S. V. Karpeev, and M. Ali Butt, Micromachines 11, 997 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. S. M. Pershin, M. Ya. Grishin, V. N. Lednev, P. A. Chizhov, and V. A. Orlovich, Opt. Lett. 44, 5045 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. R. V. Chulkov, A. S. Grabtchikov, D. N. Busko, P. A. Apanasevich, N. A. Khilo, and V. A. Orlovich, J. Opt. Soc. Am. B 23, 1109 (2006).

    Article  ADS  CAS  Google Scholar 

  11. S. M. Pershin, A. I. Vodchits, I. A. Khodasevich, M. Ya. Grishin, V. N. Lednev, V. A. Orlovich, and P. A. Chizhov, Opt. Lett. 45, 5624 (2020).

    Article  ADS  PubMed  Google Scholar 

  12. I. Prochazka, J. Kodet, J. Blazej, G. Kirchner, and F. Koidl, Adv. Space Res. 54, 755 (2014).

    Article  ADS  Google Scholar 

  13. I. Veselovskii, N. Kasianik, M. Korenskii, Q. Hu, Ph. Goloub, T. Podvin, and D. Liu, Atmos. Meas. Tech. 16, 2055 (2023).

    Article  CAS  Google Scholar 

  14. G. V. Venkin, G. M. Krochik, L. O. Kulyuk, D. I. Ma-leev, and Yu. G. Khronopulo, Sov. Phys. JETP 43, 873 (1976).

    ADS  Google Scholar 

  15. D. M. Carey and G. M. Korenowski, J. Chem. Phys. 108, 2669 (1998).

    Article  ADS  CAS  Google Scholar 

  16. D. E. Hare and C. M. Sorensen, J. Chem. Phys. 93, 13 (1990).

    Google Scholar 

  17. S. M. Pershin, M. Ya. Grishin, V. N. Lednev, and P. A. Chizhov, JETP Lett. 109, 437 (2019).

    Article  ADS  CAS  Google Scholar 

  18. S. A. Akhmanov and G. A. Lyakhov, Sov. Phys. JETP 39, 43 (1974).

    ADS  Google Scholar 

  19. S. A. Akhmanov, B. V. Zhdanov, A. I. Kovrigin, and S. M. Pershin, JETP Lett. 15, 185 (1972).

    ADS  Google Scholar 

Download references

Funding

This work was jointly supported by the Belarusian Republican Foundation for Basic Research (project no. F23RNF-040) and by the Russian Science Foundation (project no. 23-42-10019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Pershin or V. A. Orlovich.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodasevich, I.A., Vodchits, A.I., Pershin, S.M. et al. Multiple Increase in the Efficiency of Picosecond Stimulated Raman Scattering Excited by Bessel Laser Beams in Water. Jetp Lett. 119, 89–93 (2024). https://doi.org/10.1134/S0021364023603731

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603731

Navigation