Skip to main content
Log in

Simulation of the Wave Turbulence of a Liquid Surface Using the Dynamic Conformal Transformation Method

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The dynamic conformal transformation method has been generalized for the first time to numerically simulate the capillary wave turbulence of a liquid surface in the plane symmetric anisotropic geometry. The model is strongly nonlinear and involves effects of surface tension, as well as energy dissipation and pumping. Simulation results have shown that the system of nonlinear capillary waves can pass to the quasistationary chaotic motion regime (wave turbulence). The calculated exponents of spectra do not coincide with those for the classical Zakharov–Filonenko spectrum for isotropic capillary turbulence but are in good agreement with the estimate obtained under the assumption of the dominant effect of five-wave resonant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. V. E. Zakharov, G. Falkovich, and V. S. L’vov, Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer, Berlin, 1992).

    Book  Google Scholar 

  2. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, Phys. Rep. 542, 1 (2014).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  3. S. Galtier, J. Phys. A: Math. Theor. 51, 293001 (2018).

  4. S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63, 447 (2000).

    Article  ADS  Google Scholar 

  5. E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, Phys. Rev. E 105, L063101 (2022).

  6. S. Dorbolo and E. Falcon, Phys. Rev. E 83, 046303 (2011).

  7. I. A. Dmitriev, E. A. Kochurin, and N. M. Zubarev, IEEE Trans. Dielectr. Electr. Insul. 304, 1408 (2023).

    Article  Google Scholar 

  8. V. E. Zakharov and R. Z. Sagdeev, Sov. Phys. Dokl. 15, 439 (1970).

    ADS  Google Scholar 

  9. A. Griffin, G. Krstulovic, V. S. L’vov, and S. Nazarenko, Phys. Rev. Lett. 128, 224501 (2022).

  10. E. A. Kochurin and E. A. Kuznetsov, JETP Lett. 116, 863 (2022).

    Article  CAS  ADS  Google Scholar 

  11. V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 8, 37 (1967).

    Article  ADS  Google Scholar 

  12. A. O. Korotkevich, Phys. Rev. Lett. 130, 264002 (2023).

  13. Z. Zhang and Y. Pan, Phys. Rev. E 106, 044213 (2022).

  14. G. V. Kolmakov, M. Y. Brazhnikov, A. A. Levchenko, L. V. Abdurakhimov, P. V. E. McClintock, and L. P. Mezhov-Deglin, Prog. Low Temp. Phys. 16, 305 (2009).

    Article  Google Scholar 

  15. E. Falcon and N. Mordant, Ann. Rev. Fluid Mech. 54, 1 (2022).

    Article  ADS  Google Scholar 

  16. A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. L. Deike, D. Fuster, M. Berhanu, and E. Falcon, Phys. Rev. Lett. 112, 234501 (2014).

  18. Y. Pan and D. K. P. Yue, Phys. Rev. Lett. 113, 094501 (2014).

  19. E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, JETP Lett. 112, 757 (2020).

    Article  CAS  ADS  Google Scholar 

  20. G. Ricard and E. Falcon, Europhys. Lett. 135, 64001 (2021).

    Article  CAS  ADS  Google Scholar 

  21. S. Nazarenko, Wave Turbulence, Vol. 825 of Lecture Notes in Physics (Springer, Berlin, 2011).

  22. A. Dyachenko, Y. Lvov, and V. E. Zakharov, Phys. D (Amsterdam, Neth.) 87, 233 (1995).

  23. A. O. Korotkevich, A. I. Dyachenko, and V. E. Zakharov, Phys. D (Amsterdam, Neth.) 321, 51 (2016).

  24. A. C. Newell and B. Rumpf, Ann. Rev. Fluid Mech. 43, 59 (2011).

    Article  ADS  Google Scholar 

  25. S. Walton and M. B. Tran, SIAM J. Sci. Comput. 45, B467 (2023).

    Article  Google Scholar 

  26. L. V. Ovsjannikov, Arch. Mech. 26, 6 (1974).

    MathSciNet  Google Scholar 

  27. A. I. Dyachenko, E. A. Kuznetsov, M. Spector, and V. E. Zakharov, Phys. Lett. A 221, 736 (1996).

    Google Scholar 

  28. V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).

    Article  MathSciNet  Google Scholar 

  29. S. Tanveer, Proc. R. Soc. London, Ser. A 435 (1893), 137 (1991).

  30. S. Tanveer, Proc. R. Soc. London, Ser. A 441 (1913), 501 (1993).

  31. S. A. Dyachenko, Stud. Appl. Math. 148, 125 (2022).

    Article  MathSciNet  Google Scholar 

  32. V. P. Ruban, J. Exp. Theor. Phys. 130, 797 (2020).

    Article  CAS  ADS  Google Scholar 

  33. S. Dyachenko and A. C. Newell, Stud. Appl. Math. 137, 199 (2016).

    Article  MathSciNet  Google Scholar 

  34. A. O. Korotkevich, A. Prokofiev, and V. E. Zakharov, JETP Lett. 109, 309 (2019).

    Article  CAS  ADS  Google Scholar 

  35. A. Nachbin, Phys. D (Amsterdam, Neth.) 445, 133646 (2023).

  36. T. Gao, A. Doak, J. M. Vanden-Broeck, and Z. Wang, Eur. J. Mech. B: Fluids 77, 98 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  37. M. V. Flamarion, T. Gao, R. Ribeiro, Jr., and A. Doak, Phys. Fluids 34, 127119 (2022).

  38. E. A. Kochurin, J. Appl. Mech. Tech. Phys. 59, 79 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Murashige and W. Choi, J. Comput. Phys. 328, 234 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  40. J. Shelton, P. Milewski, and P. H. Trinh, J. Fluid Mech. 972, R6 (2023).

    Article  ADS  Google Scholar 

  41. L. Kayal, S. Basak, and R. Dasgupta, J. Fluid Mech. 951, A26 (2022).

    Article  ADS  Google Scholar 

  42. E. Herbert, N. Mordant, and E. Falcon, Phys. Rev. Lett. 105, 144502 (2010).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-72-30028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kochurin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochurin, E.A. Simulation of the Wave Turbulence of a Liquid Surface Using the Dynamic Conformal Transformation Method. Jetp Lett. 118, 893–898 (2023). https://doi.org/10.1134/S0021364023603640

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603640

Navigation