Skip to main content
Log in

Interlayer Conductivity of Quasi-Two-Dimensional Layered Conductors in a Magnetic Field at Yamaji Angles

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The behavior of the interlayer magnetoresistance Rzz is analyzed in quasi-two-dimensional layered metals in a magnetic field tilted at Yamaji angles at which the minimum of the interlayer conductivity is observed. The cases of the Lorentzian line shape of Landau levels and of the shape corresponding to the self-consistent Born approximation are studied. At high fields, the behavior Rzz \( \propto \) B3/2 is theoretically predicted, which agrees well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. M. V. Kartsovnik, P. A. Kononovich, V. N. Laukhin, and I. F. Shchegolev, JETP Lett. 48, 541 (1988).

    ADS  Google Scholar 

  2. K. Yamaji, J. Phys. Soc. Jpn. 58, 1520 (1989).

    Article  CAS  ADS  Google Scholar 

  3. R. Yagi, Y. Iye, T. Osada, and S. Kagoshima, J. Phys. Soc. Jpn. 59, 3069 (1990).

    Article  ADS  Google Scholar 

  4. M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. N. E. Hussey, M. Abdel-Jawad, A. Carrington, A. P. Mackenzie, and L. Balicas, Nature (London, U.K.) 425, 814 (2003).

    Article  CAS  ADS  Google Scholar 

  6. M. Kimata, T. Terashima, N. Kurita, et al., Phys. Rev. Lett. 105, 246403 (2010).

  7. R. Yagi, Y. Iye, Y. Odarigi, H. Noguchi, H. Sakaki, and T. Ikoma, J. Phys. Soc. Jpn. 60, 3784 (1991).

    Article  CAS  ADS  Google Scholar 

  8. P. Moses and R. H. McKenzie, Phys. Rev. B 60, 7998 (1999).

    Article  CAS  ADS  Google Scholar 

  9. P. D. Grigoriev, M. V. Kartsovnik, and W. Biberacher, Phys. Rev. B 86, 165125 (2012).

  10. A. D. Grigoriev and P. D. Grigoriev, Low Temp. Phys. 40, 367 (2014); arXiv: 1310.7109v2.

    Article  ADS  Google Scholar 

  11. T. Ando, J. Phys. Soc. Jpn. 36, 959 (1974).

    Article  ADS  Google Scholar 

  12. T. Ando, J. Phys. Soc. Jpn. 36, 1521 (1974).

    Article  ADS  Google Scholar 

  13. P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).

  14. P. D. Grigoriev, JETP Lett. 94, 47 (2011).

    Article  CAS  ADS  Google Scholar 

  15. P. D. Grigoriev, Low Temp. Phys. 37, 738 (2011).

    Article  CAS  ADS  Google Scholar 

  16. P. D. Grigoriev, Phys. Rev. B 88, 054415 (2013).

  17. P. D. Grigoriev, M. V. Kartsovnik, and W. Biberacher, Phys. Rev. B 86, 165125 (2012).

  18. P. D. Grigoriev and T. I. Mogilyuk, Phys. Rev. B 90, 115138 (2014).

  19. P. D. Grigoriev and T. I. Mogilyuk, Phys. Rev. B 95, 195130 (2017).

  20. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).

    Book  Google Scholar 

  21. P. D. Grigoriev and T. I. Mogilyuk, J. Phys.: Conf. Ser. 1038, 012123 (2018).

  22. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980).

    Google Scholar 

  23. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon and Breach, New York, 1990), Vol. 2.

    Google Scholar 

  24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972).

    Google Scholar 

  25. Y. A. Brychkov, Integr. Transforms Spec. Funct. 27, 566 (2016).

    Article  Google Scholar 

  26. T. Ando, J. Phys. Soc. Jpn. 36, 959 (1974).

    Article  ADS  Google Scholar 

  27. U. Lundin and R. H. McKenzie, Phys. Rev. B 68, 081101(R) (2003).

  28. A. A. Abrikosov, Phys. C (Amsterdam, Neth.) 317318, 154 (1999).

  29. M. V. Kartsovnik, P. D. Grigoriev, W. Biberacher, and N. D. Kushch, Phys. Rev. B 79, 165120 (2009).

Download references

Funding

T.I. Mogilyuk acknowledges the support of the Russian Foundation for Basic Research, project no. 21-52-12027. S.A. Gudin acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation, project no. 122021000038-7 Quantum. P.D. Grigoriev acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation (project no. 0033-2019-0001 Advances in Condensed Matter Theory), of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project no. 22-1-1-24-1), and of the National University of Science and Technology MISIS (project no. K2-2022-025, Federal Academic Leadership Program Priority-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Grigoriev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by K. Kugel

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogilyuk, T.I., Gudin, S.A. & Grigoriev, P.D. Interlayer Conductivity of Quasi-Two-Dimensional Layered Conductors in a Magnetic Field at Yamaji Angles. Jetp Lett. 118, 881–885 (2023). https://doi.org/10.1134/S0021364023603378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603378

Navigation