Skip to main content
Log in

Identification of Optically Active Quartet Spin Centers Based on a Si Vacancy in SiC Promising for Quantum Technologies

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Optically active (bright) and optically inactive (dark) quartet S = 3/2 spin color centers including a negatively charged Si vacancy have been identified in silicon carbide using high-frequency electron nuclear double resonance on the nuclei of the 13C isotope, enhanced by a tenfold increase in its content. The alignment of populations of spin levels is optically induced in a bright center promising for quantum technologies, whereas the populations of spin levels in a dark center, which is an isolated negatively charged Si vacancy \({\text{V}}_{{{\text{Si}}}}^{ - }\), correspond to a Boltzmann distribution and do not change under optical excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. P. G. Baranov, I. V. Il’in, E. N. Mokhov, M. V. Muzafarova, S. B. Orlinskii, and J. Schmidt, JETP Lett. 82, 441 (2005).

    Article  ADS  Google Scholar 

  2. P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, JETP Lett. 86, 202 (2007).

    Article  ADS  Google Scholar 

  3. P. G. Baranov, A. P. Bundakova, A. A. Soltamova, S. B. Orlinskii, I. V. Borovykh, R. Zondervan, R. Verberk, and J. Schmidt, Phys. Rev. B 83, 125203 (2011).

  4. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, Nature (London, U.K.) 479, 84 (2011).

    Article  ADS  Google Scholar 

  5. V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, Phys. Rev. Lett. 108, 226402 (2012).

  6. D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012).

  7. H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Nat. Phys. 10, 157 (2014).

    Article  Google Scholar 

  8. V. A. Soltamov, B. V. Yavkin, D. O. Tolmachev, R. A. Babunts, A. G. Badalyan, V. Yu. Davydov, E. N. Mokhov, I. I. Proskuryakov, S. B. Orlinskii, and P. G. Baranov, Phys. Rev. Lett. 115, 247602 (2015).

  9. M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzıen, and J. Wrachtrup, Nat. Mater. 14, 164 (2015).

    Article  ADS  Google Scholar 

  10. C. J. Cochrane, J. Blacksberg, M. A. Anders, and P. M. Lenahan, Sci. Rep. 6, 37077 (2016).

    Article  ADS  Google Scholar 

  11. P. G. Baranov, H.-J. von Bardeleben, F. Jelezko, and J. Wrachtrup, Magnetic Resonance of Semiconductors and Their Nanostructures: Basic and Advanced Applications, Vol. 253 of Springer Series in Materials Science (Springer, Austria, 2017), Chap. 6.

  12. S. A. Tarasenko, A. V. Poshakinskiy, D. Simin, V. A. Soltamov, E. N. Mokhov, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Phys. Status Solidi B 255, 1700258 (2018).

  13. V. A. Soltamov, C. Kasper, A. V. Poshakinskiy, A. N. Anisimov, E. N. Mokhov, A. Sperlich, S. A. Tarasenko, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Nat. Commun. 10, 678 (2019).

    Article  Google Scholar 

  14. R. A. Babunts, Yu. A. Uspenskaya, A. S. Gurin, A. P. Bundakova, G. V. Mamin, A. N. Anisimov, E. N. Mokhov, and P. G. Baranov, JETP Lett. 116, 485 (2022).

    Article  ADS  Google Scholar 

  15. R. A. Babunts, Yu. A. Uspenskaya, A. P. Bundakova, G. V. Mamin, A. N. Anisimov, and P. G. Baranov, JETP Lett. 116, 785 (2022).

    Article  ADS  Google Scholar 

  16. V. A. Soltamov, B. V. Yavkin, G. V. Mamin, S. B. Orlinskii, I. D. Breev, A. P. Bundakova, R. A. Babunts, A. N. Anisimov, and P. G. Baranov, Phys. Rev. B 104, 125205 (2021).

  17. V. Ivady, J. Davidsson, N. T. Son, T. Ohshima, I. Abrikosov, and A. Gali, Phys. Rev. B 96, 161114(R) (2017).

  18. T. Wimbauer, B. K. Meyer, A. Hofstaetter, A. Scharmann, and H. Overhof, Phys. Rev. B 56, 7384 (1997).

    Article  ADS  Google Scholar 

  19. S. B. Orlinski, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Phys. Rev. B 67, 125207 (2003).

  20. A. Csore, N. T. Son, and A. Gali, Phys. Rev. B 104, 035207 (2021).

  21. P. G. Baranov, R. A. Babunts, A. A. Soltamova, V. A. Soltamov, and A. P. Bundakova, RF Patent No. 2523744 (2014).

  22. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, Science (Washington, DC, U. S.) 276, 2012 (1997).

    Article  Google Scholar 

  23. A. Drabenstedt, L. Fleury, C. Tietz, F. Jelezko, S. Kilin, A. Nizovtzev, and J. Wrachtrup, Phys. Rev. B 60, 11503 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 23-12-00152, https://rscf.ru/project/23-12-00152/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Uspenskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babunts, R.A., Uspenskaya, Y.A., Bundakova, A.P. et al. Identification of Optically Active Quartet Spin Centers Based on a Si Vacancy in SiC Promising for Quantum Technologies. Jetp Lett. 118, 629–636 (2023). https://doi.org/10.1134/S0021364023603135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603135

Navigation