Skip to main content
Log in

Neo-Canonical Profiles of the Electron Density and Temperature of the Plasma in the Hot Ion Mode at the Globus-M2 Tokamak

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

It is shown that the radial profile of the electron temperature in the Globus-M2 spherical tokamak is related to the radial profile of the electron density by a power law \({{T}_{e}}(\rho ) = {\text{const}}{\kern 1pt} {{n}_{e}}{{(\rho )}^{{1.65}}}\). An analytical model of the density attractor, assuming the dependence of \({{n}_{e}}\) on the specific poloidal volume v, previously tested on the TCV and JET tokamaks with a large aspect ratio, holds on the spherical tokamak, and the approximation of 162 experimental profiles has resulted in \({{n}_{e}}(\rho ){v}{{(\rho )}^{{1.06}}} = {\text{const}}\). The proposed model makes it possible to calculate the spatial distribution \({{T}_{e}}(\rho )\) and \({{n}_{e}}(\rho )\) according to a known magnetic configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. B. Coppi, Comm. Plasma Phys. Control. Fusion 5, 261 (1980).

    CAS  Google Scholar 

  2. Yu. V. Esiptchuk and K. A. Razumova, Plasma Phys. Control. Fusion 28, 1253 (1986).

    Article  ADS  Google Scholar 

  3. V. P. Pastukhov and D. V. Smirnov, Plasma Phys. Rep. 42, 307 (2016).

    Article  ADS  CAS  Google Scholar 

  4. B. B. Kadomtsev, Sov. J. Plasma Phys. 13, 443 (1987).

    Google Scholar 

  5. Y. N. Dnestrovskij, Self-Organization of Hot Plasmas (Springer, Heidelberg, 2015). https://doi.org/10.1007/978-3-319-06802-2

    Book  Google Scholar 

  6. K. S. Dyabilin and K. A. Razumova, Nucl. Fusion 55, 053023 (2015).

  7. K. S. Dyabilin and K. A. Razumova, Plasma Phys. Rep. 41, 685 (2015).

    Article  ADS  Google Scholar 

  8. E. Minardi, Phys. Lett. 70, A240 (1998).

    Google Scholar 

  9. V. V. Yan’kov, JETP Lett. 60, 171 (1994).

    ADS  Google Scholar 

  10. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nucl. Fusion 1, 82 (1961).

    Article  Google Scholar 

  11. A. A. Galeev and L. I. Rudakov, Sov. Phys. JETP 18, 444 (1964).

    Google Scholar 

  12. D. R. Baker and M. N. Rosenbluth, Phys. Plasmas 5, 2936 (1998).

    Article  ADS  CAS  Google Scholar 

  13. V. V. Yankov, Plasma Phys. Rep. 21, 719 (1995).

    ADS  Google Scholar 

  14. D. R. Baker, M. R. Wade, C. C. Petty, et al., Nucl. Fusion 40, 1003 (2000).

    Article  ADS  CAS  Google Scholar 

  15. H. Weisen, I. Furno, S. Alberti, et al., Nucl. Fusion 42, 136 (2002).

    Article  ADS  CAS  Google Scholar 

  16. V. V. Yan’kov, Phys. Usp. 40, 477 (1997). https://doi.org/10.1070/PU1997v040n05

    Article  ADS  Google Scholar 

  17. K. A. Razumova and S. E. Lysenko, Plasma 6, 408 (2023). https://doi.org/10.3390/plasma6030028

    Article  CAS  Google Scholar 

  18. V. P. Pastukhov and D. V. Smirnov, JETP Lett. 114, 208 (2021).

    Article  ADS  CAS  Google Scholar 

  19. A. B. Kukushkin, P. A. Sdvizhenskii, J. Flanagan, D. Kos, V. S. Neverov, G. Szepesi, D. M. A. Taylor, and JET Contrib., Plasma Phys. Control. Fusion 65, 075009 (2023).

  20. V. B. Minaev, V. K. Gusev, N. V. Sakharov, et al., Nucl. Fusion 57, 066047 (2017).

  21. Yu. V. Petrov, V. K. Gusev, N. V. Sakharov, et al., Nucl. Fusion 62, 042009 (2022).

  22. G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, et al., Nucl. Fusion 61, 064001 (2021).

  23. G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, et al., Nucl. Fusion 62, 016011 (2022).

  24. N. N. Bakharev, I. M. Balachenkov, F. V. Chernyshev, et al., Phys. Plasmas 30, 072507 (2023).

  25. G. S. Kurskiev, I. V. Miroshnikov, N. V. Sakharov, et al., Nucl. Fusion 62, 104002 (2022).

  26. G. S. Kurskiev, N. V. Sakharov, V. K. Gusev, et al., Plasma Phys. Rep. 49, 403 (2023).

    Article  ADS  Google Scholar 

  27. G. S. Kurskiev, N. S. Zhiltsov, A. N. Koval, A. F. Kornev, A. M. Makarov, E. E. Mukhin, Yu. V. Petrov, N. V. Sakharov, V. A. Solovey, E. E. Tkachenko, S. Yu. Tolstyakov, and P. V. Chernakov, Tech. Phys. Lett. 48 (15), 78 (2022).

    Article  Google Scholar 

  28. N. S. Zhiltsov, G. S. Kurskiev, S. Yu. Tolstyakov, et al., arXiv: 2311.18723 [physics.plasm-ph]. https://doi.org/10.48550/arXiv.2311.18723

  29. S. P. Hirshman, R. J. Hawryluk, and B. Birge, Nucl. Fusion 17, 611 (1977).

    Article  ADS  Google Scholar 

  30. Yu. V. Petrov, P. A. Bagryanskii, I. M. Balachenkov, et al., Plasma Phys. Rep. 49,1459 (2023).

    Article  Google Scholar 

  31. V. V. Solokha, G. S. Kurskiev, A. Yu. Yashin, I. M. Balachenkov, V. I. Varfolomeev, A. V. Voronin, V. K. Gusev, V. Yu. Goryainov, V. V. Dyachenko, N. S. Zhiltsov, E. O. Kiselev, V. B. Minaev, A. N. Novokhatsky, Yu. V. Petrov, A. M. Ponomarenko, et al., Plasma Phys. Rep. 49, 419 (2023).

    Article  ADS  Google Scholar 

  32. R. J. Goldston, Nucl. Fusion 52, 013009 (2012).

  33. A. B. Mineev, E. N. Bondarchuk, A. A. Kavin, et al., Phys. At. Nucl. 85, 1194 (2022).

    Article  CAS  Google Scholar 

  34. A. B. Mineev, E. N. Bondarchuk, A. A. Kavin, et al., Phys. At. Nucl. 85, 1205 (2022).

    Article  CAS  Google Scholar 

  35. A. B. Mineev, V. B. Minaev, N. V. Sakharov, et al., Phys. At. Nucl. 85, S17 (2022).

    Article  CAS  Google Scholar 

  36. V. B. Minaev, A. B. Mineev, N. V. Sakharov, et al., Plasma Phys. Rep. 49, 1577 (2023).

    Article  Google Scholar 

  37. S. V. Mirnov, Nucl. Fusion 9, 57 (1969).

    Article  Google Scholar 

  38. N. V. Sakharov, T. Yu. Akatova, L. G. Askinazi, et al., Plasma Phys. Control. Fusion 35, 411 (1993).

    Article  ADS  CAS  Google Scholar 

  39. K. M. McGuire, H. Adler, P. Alling, et al., Phys. Plasmas 2, 2176 (1995). https://doi.org/10.1063/1.871303

    Article  ADS  CAS  Google Scholar 

  40. M. Keilhacker, A. Gibson, C.Gormezano, et al., Nucl. Fusion 39, 209 (1999).

    Article  ADS  CAS  Google Scholar 

  41. C. Angioni, L. Carraro, T. Dannert, et al., Phys. Plasmas 14, 055905 (2007). https://doi.org/10.1063/1.2515300

Download references

ACKNOWLEDGMENTS

We are grateful to A.Yu. Dnestrovskij for fruitful discussions. Experiments were performed at the unique Globus-M spherical tokamak, which is a part of the Federal Center for Collective Use “Materials Science and Diagnostics in Advanced Technologies,” Ioffe Institute.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 0034-2021-0001, experiments on plasma heating using neutral injection, and contract no. 0040-2019-0023, measurement of the spatial electron temperature and density distributions and processing of the experimental results).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Kurskiev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurskiev, G.S., Yankov, V.V., Gusev, V.K. et al. Neo-Canonical Profiles of the Electron Density and Temperature of the Plasma in the Hot Ion Mode at the Globus-M2 Tokamak. Jetp Lett. 119, 34–39 (2024). https://doi.org/10.1134/S0021364023603093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603093

Navigation