Skip to main content
Log in

Molecular Dynamics Study of the Structural and Diffusion Properties of Dehydrated Layered Double Aluminum and Lithium Hydroxide

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

An atomistic model of dehydrated Cl-doped double layer aluminum–lithium hydroxide \({\text{Li}} \cdot {\text{A}}{{{\text{l}}}_{2}}{{({\text{OH}})}_{6}}{\text{Cl}}\) (DALH-Cl), which is a promising material for the sorption of lithium from weak brines, has been developed. The effective charges of the atoms of the system have been determined using the density derived electrostatic and chemical (DDEC6) methods. A molecular dynamics analysis of DALH-Cl has been performed within the developed model. The structural characteristics of three atomic pairs in metallic layers of DALH-Cl and the probability density distribution of atoms in the direction perpendicular to these layers have been calculated. The temperature dependence of the diffusion coefficient of lithium atoms in the space between metallic layers in the temperature range of 325–450 K has been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. H. Bae and Y. Kim, Mater. Adv. 2, 3234 (2021).

    Article  Google Scholar 

  2. Y. Liu, B. Ma, Y. Lü, C. Wang, and Y. Chen, Int. J. Miner. Metall. Mater. 30, 209 (2023).

    Article  Google Scholar 

  3. A. Khalil, S. Mohammed, R. Hashaikeh, and N. Hilal, Desalination 528, 115611 (2022).

  4. M. Lal and A. T. Howe, J. Chem. Soc., Chem. Commun. 15, 737 (1980).

    Article  Google Scholar 

  5. M. P. Paranthaman, L. Li, J. Luo, T. Hoke, H. Ucar, B. A. Moyer, and S. Harrison, Environ. Sci. Technol. 51, 13481 (2017).

    Article  ADS  Google Scholar 

  6. A. B. Alkhasov, D. A. Alkhasova, A. Sh. Ramazanov, and M. A. Kasparova, Therm. Eng. 63, 404 (2016).

    Article  Google Scholar 

  7. A. B. Alkhasov, D. A. Alkhasova, A. Sh. Ramazanov, and M. A. Kasparova, Therm. Eng. 64, 637 (2017).

    Article  Google Scholar 

  8. L. Wu, L. Li, S. F. Evans, T. A. Eskander, B. A. Moyer, Z. Hu, P. J. Antonick, S. Harrison, M. P. Paranthaman, R. Riman, and A. Navrotsky, J. Am. Ceram. Soc. 102, 2398 (2019).

    Article  Google Scholar 

  9. A. V. Besserguenev, T. D. Dzhambazov, O. V. Magdysyuk, and P. G. Bruce, Chem. Mater. 9, 241 (1997).

    Article  Google Scholar 

  10. D. G. Costa, A. B. Rocha, R. Diniz, W. F. Souza, S. S. X. Chiaro, and A. A. Leitao, J. Phys. Chem. C 114, 14133 (2010).

    Article  Google Scholar 

  11. Y. Zhang, X. Cheng, C. Wu, J. Köhler, and S. Deng, Molecules 24, 2667 (2019).

    Article  Google Scholar 

  12. N. D. Kondratyuk and V. V. Pisarev, Phys. Usp. 66, 410 (2023).

    Article  ADS  Google Scholar 

  13. N. M. Chtchelkatchev and R. E. Ryltsev, JETP Lett. 102, 643 (2015).

    Article  ADS  Google Scholar 

  14. V. R. Belosludov, K. V. Gets, R. K. Zhdanov, Yu. Yu. Bozhko, R. V. Belosludov, and L.-J. Chen, JETP Lett. 115, 124 (2022).

    Article  ADS  Google Scholar 

  15. E. O. Khazieva, N. M. Shchelkachev, A. O. Tipeev, and R. E. Ryl’tsev, J. Exp. Theor. Phys. 137 (2023, in press).

  16. J. Chen and L. Li, JETP Lett. 112, 117 (2020).

    Article  ADS  Google Scholar 

  17. V. N. Ryzhov, E. E. Tareyeva, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 63, 417 (2020).

    Article  ADS  Google Scholar 

  18. R. T. Cygan, J. J. Liang, and A. G. Kalinichev, J. Phys. Chem. B 108, 1255 (2004).

    Article  Google Scholar 

  19. R. T. Cygan, J. A. Greathouse, and A. G. Kalinichev, J. Phys. Chem. C 125, 17573 (2021).

    Article  Google Scholar 

  20. N. Kim, A. Harale, T. T. Tsotsis, and M. Sahimi, J. Chem. Phys. 127, 224701 (2007).

  21. G. M. Lombardo, G. C. Pappalardo, F. Punzo, F. Costantino, U. Costantino, and M. Sisani, Eur. J. Inorg. Chem. 2005, 5026 (2005).

    Article  Google Scholar 

  22. A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, J. Phys. Chem. A 105, 9396 (2001).

    Article  Google Scholar 

  23. T. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin, C. Junkermeier, R. Engel-Herbert, M. J. Janik, H. M. Aktulga, T. Verstraelen, A. Grama, and A. C. T. van Duin, npj Comput Mater. 2, 15011 (2016).

  24. I. Sissoko, E. T. Iyagba, R. Sahai, and P. Biloen, J. Solid State Chem. 60, 283 (1985).

    Article  ADS  Google Scholar 

  25. S.-T. Zhang, H. Yan, M. Wei, D. G. Evans, and X. Duan, J. Phys. Chem. C 116, 3421 (2012).

    Article  Google Scholar 

  26. E. V. Tararushkin, V. V. Pisarev, and A. G. Kalinichev, Cement Concrete Res. 156, 106759 (2022).

  27. G. Pérez-Sánchez, T. L. P. Galvao, J. Tedim, and J. R. B. Gomes, Appl. Clay Sci. 165, 164 (2018).

    Article  Google Scholar 

  28. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).

    Article  ADS  Google Scholar 

  29. N. G. Limas and T. A. Manz, RSC Adv. 6, 45727 (2016).

    Article  ADS  Google Scholar 

  30. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  ADS  Google Scholar 

  31. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).

  32. M. Pekka and N. Lennart, J. Phys. Chem. A 105, 9954 (2001).

    Article  Google Scholar 

  33. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys. Condens. Matter 21, 395502 (2009).

  34. A. P. Thompson, H. M. Aktulga, R. Berger, et al., Comput. Phys. Commun. 271, 10817 (2022).

    Article  Google Scholar 

  35. E. A. Lobashev, A. S. Antropov, and V. V. Stegailov, J. Exp. Theor. Phys. 136, 174 (2023).

    Article  ADS  Google Scholar 

  36. A. Antropov and V. Stegailov, J. Nucl. Mater. 573, 154123 (2023).

  37. A. B. Belonoshko, J. Fu, and G. Smirnov, Phys. Rev. B 104, 104103 (2021).

  38. A. B. Belonoshko, S. I. Simak, W. Olovsson, and O. Yu. Vekilova, Phys. Rev. B 105, L180102 (2022).

  39. V. G. Baidakov and A. O. Tipeev, J. Non-Cryst. Solids 503–504, 302 (2019).

    Article  ADS  Google Scholar 

  40. N. D. Kondratyuk, G. E. Norman, and V. V. Stegailov, J. Chem. Phys. 145, 204504 (2016).

  41. N. Kondratyuk, D. Lenev, and V. Pisarev, J. Chem. Phys. 152, 191104 (2020).

  42. J. T. Bullerjahn, S. von Bülow, and G. Hummer, J. Chem. Phys. 153, 024116 (2020).

  43. D. M. Heyes, E. R. Smith, and D. Dini, J. Chem. Phys. 150, 174504 (2019).

  44. A. O. Tipeev, E. D. Zanotto, and J. P. Rino, J. Phys. Chem. C 122, 28884 (2018).

    Article  Google Scholar 

  45. V. I. Deshchenya, N. D. Kondratyuk, A. V. Lankin, and G. E. Norman, J. Mol. Liq. 367, 120456 (2022).

  46. O. V. Kashurin, N. D. Kondratyuk, A. V. Lankin, and G. E. Norman, Russ. J. Phys. Chem. A 97, 1183 (2023).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The calculations were performed at the Soft Cluster, Multiscale Simulation Laboratory for Soft Matter Physics, Moscow Institute of Physics and Technology.

Funding

V.G. Luk’yanchuk and A.V. Lankin acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2021-1316 dated September 30, 2021, Federal Academic Leadership Program Priority-2030) and G. E. Norman acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 075-01129-23-00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Luk’yanchuk, A. V. Lankin or G. E. Norman.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luk’yanchuk, V.G., Lankin, A.V. & Norman, G.E. Molecular Dynamics Study of the Structural and Diffusion Properties of Dehydrated Layered Double Aluminum and Lithium Hydroxide. Jetp Lett. 118, 597–602 (2023). https://doi.org/10.1134/S002136402360297X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402360297X

Navigation