Skip to main content
Log in

Thermally Induced Magnetization Reversal in Submicron Ni Particles Formed on Single Crystalline Lithium Triborate

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The influence of the thermally induced magnetoelastic effect on the magnetization reversal field in 0.9 × 0.3 × 0.03-μm Ni particles formed on a single crystalline lithium triborate (LiB3O5) substrate has been studied. It has been shown experimentally that this substrate can reduce the magnetization reversal field of particles by a factor of more than 1.5 as the temperature of the sample increases from 30 to 45°C. This reduction of the reversal field is due to magnetoelastic anisotropy induced in the particles by the difference between the thermal expansion coefficients of the substrate along different crystallographic axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, Proc. IEEE 96, 1810 (2008). https://doi.org/10.1109/JPROC.2008.2004315

    Article  Google Scholar 

  2. C. Vogler, C. Abert, F. Bruckner, D. Suess, and D. Praetorius, Appl. Phys. Lett. 108, 102406 (2016). https://doi.org/10.1063/1.4943629

  3. W.-H. Hsu and R. H. Victora, J. Magn. Magn. Mater. 563, 169973 (2022). https://doi.org/10.1016/j.jmmm.2022.169973

  4. N. I. Nurgazizov, T. F. Khanipov, D. A. Bizyaev, A. A. Bukharaev, and A. P. Chuklanov, Phys. Solid State 56, 1817 (2014). https://doi.org/10.1134/S1063783414090212

    Article  ADS  Google Scholar 

  5. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, NY, 1996).

  6. Y. Liu, Q. Zhan, G. Dai, Xi. Zhang, B. Wang, G. Liu, Zh. Zuo, X. Rong, H. Yang, Xi. Zhu, Y. Xie, B. Chen, and R.-W. Li, Sci. Rep. 4, 6925 (2014). https://doi.org/10.1038/srep06925

    Article  ADS  Google Scholar 

  7. D. A. Bizyaev, A. A. Bukharaev, N. I. Nurgazizov, A. P. Chuklanov, and S. A. Migachev, Phys. Status Solidi RRL 14, 2000256 (2020). https://doi.org/10.1002/pssr.202000256

  8. R. V. Gorev and O. G. Udalov, Phys. Solid State 61, 1563 (2019). https://doi.org/10.1134/S1063783419090087

    Article  ADS  Google Scholar 

  9. N. A. Usov, C.-R. Chang, and Z.-H. Wei, J. Appl. Phys. 89, 7591 (2001). https://doi.org/10.1063/1.1357133

    Article  ADS  Google Scholar 

  10. A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and K. Fetisov, Phys. Usp. 61, 1175 (2018). https://doi.org/10.3367/UFNe.2018.01.038279

    Article  ADS  Google Scholar 

  11. S. Bandyopadhyay, J. Atulasimha, and A. Barman, Appl. Phys. Rev. 8, 041323 (2021). https://doi.org/10.1063/5.0062993

  12. N. I. Nurgazizov, D. A. Bizyaev, A. A. Bukharaev, A. P. Chuklanov, V. Ya. Shur, and A. R. Akhmatkhanov, Phys. Solid State 65 (6) (2023, in press).

  13. K. P. Belov, Magnetostrictive Phenomena and Their Technical Applications (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  14. V. L. Mironov and O. L. Ermolaeva, J. Surf. Invest.: X‑ray, Synchrotr. Neutron Tech. 3, 840 (2009). https://doi.org/10.1134/S1027451009050292

    Article  Google Scholar 

  15. N. D’Souza, M. S. Fashami, S. Bandyopadhyay, and J. Atulasimha, Nano Lett. 16, 1069 (2016). https://doi.org/10.1021/acs.nanolett.5b04205

    Article  ADS  Google Scholar 

  16. J. de Venta, S. Wang, T. Saerbeck, J. G. Ramirez, I. Valmianski, and I. K. Schuller, Appl. Phys. Lett. 104, 62410 (2014). https://doi.org/10.1063/1.4865587

    Article  Google Scholar 

  17. R. F. Need, J. Lauzier, L. Sutton, B. J. Kirby, and J. de la Venta, APL Mater. 7, 101115 (2019). https://doi.org/10.1063/1.5118893

  18. V. Gorige, A. Swain, K. Komatsu, M. Itoh, and T. Taniyama, Phys. Status Solidi RRL 11, 1700294 (2017). https://doi.org/10.1002/pssr.201700294

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-29-00085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Chuklanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizyaev, D.A., Chuklanov, A.P., Nurgazizov, N.I. et al. Thermally Induced Magnetization Reversal in Submicron Ni Particles Formed on Single Crystalline Lithium Triborate. Jetp Lett. 118, 591–596 (2023). https://doi.org/10.1134/S0021364023602968

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023602968

Navigation