Skip to main content
Log in

Evolution of the Luminescence Properties of Single CsPbBr3 Perovskite Nanocrystals During Photodegradation

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The evolution of the luminescence blinking of single CsPbBr3 perovskite nanocrystals with a characteristic size of ~25 nm during photodegradation has been experimentally investigated. It has been demonstrated that the blue shift of the luminescence peak and a decrease in the average luminescence intensity are accompanied by the increasing role of nonradiative Auger processes underlying the charging mechanism of blinking. A method based on the analysis of photon antibunching g2(0) and exciton and biexciton recombination rates is used to determine the blinking mechanism. The data obtained have made it possible to reveal a transition from the trapping to charging blinking mechanism with a change in the sizes of a CsPbBr3 single nanocrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. Shamsi, A. S. Urban, M. Imran, L. de Trizio, and L. Manna, Chem. Rev. 119, 3296 (2019).

    Article  Google Scholar 

  2. A. K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119, 3036 (2019).

    Article  Google Scholar 

  3. J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Adv. Mater. 27, 7162 (2015).

    Article  Google Scholar 

  4. O. I. Patsinko, A. A. Romanenko, V. V. Kryukov, L. L. Trotsyuk, O. S. Kulakovich, and S. V. Gaponenko, J. Appl. Spectrosc. 90, 54 (2023).

    Article  ADS  Google Scholar 

  5. S. Ullah, J. Wang, P. Yang, L. Liu, Sh.-E. Yang, T. Xia, H. Guo, and Yo. Chen, Mater. Adv. 2, 646 (2021).

    Article  Google Scholar 

  6. J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, and H. Zeng, Adv. Mater. 28, 4861 (2016).

    Article  Google Scholar 

  7. K. S. Sekerbayev, G. K. Mussabek, N. S. Pokryshkin, V. G. Yakunin, Ye. T. Taurbayev, Ye. Shabdan, Z. N. Utegulov, V. S. Chirvony, and V. Yu. Timoshenko, JETP Lett. 114, 447 (2021).

    Article  ADS  Google Scholar 

  8. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. de Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Nat. Commun. 6, 8056 (2015).

    Article  ADS  Google Scholar 

  9. G. Yuan, C. Ritchie, M. Ritter, S. Murphy, D. E. Gómez, and P. Mulvaney, J. Phys. Chem. C 122, 13407 (2017).

    Article  Google Scholar 

  10. Z. Wang, Z. Zhang, L. Xie, S. Wang, Ch. Yang, Ch. Fang, and F. Hao, Adv. Opt. Mater. 10, 2101822 (2021).

  11. R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, Nature (London, U.K.) 388 (6640), 355 (1997).

    Article  ADS  Google Scholar 

  12. D. A. V. Bout, W.-T. Yip, D. H. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, Science (Washington, DC, U. S.) 277, 1074 (1997).

    Article  Google Scholar 

  13. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Mack-lin, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature (London, U.K.) 383, 802 (1996).

    Article  ADS  Google Scholar 

  14. Y. Tian, A. Merdasa, M. Peter, M. Abdellah, K. Zheng, C. S. Ponseca, T. Pullerits, A. Yartsev, V. Sundstrom, and I. G. Scheblykin, Nano Lett. 15, 1603 (2015).

    Article  ADS  Google Scholar 

  15. A. Halder, N. Pathoor, A. G. Chowdhury, and S. K. Sarkar, J. Phys. Chem. C 122, 15133 (2018).

    Article  Google Scholar 

  16. A. L. Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).

    Article  ADS  Google Scholar 

  17. P A. Frantsuzov and R. A. Marcus, Phys. Rev. B 72, 155321 (2005).

  18. P. A. Frantsuzov, S. Volkan-Kacso, and B. Janko, Phys. Rev. Lett. 103, 207402 (2009).

  19. I. Pelant and J. Valenta, Luminescence Spectroscopy of Semiconductors (Oxford Univ. Press, Oxford, 2012).

    Book  Google Scholar 

  20. D. S. Gets, E. Yu. Tiguntseva, A. S. Berestennikov, T. G. Lyashenko, A. P. Pushkarev, S. V. Makarov, and A. A. Zakhidov, JETP Lett. 107, 742 (2018).

    Article  ADS  Google Scholar 

  21. M. Gerhard, B. Louis, R. Camacho, A. Merdasa, J. Li, A. Kiligaridis, A. Dobrovolsky, J. Hofkens, and I. G. Scheblykin, Nat. Commun. 10, 1698 (2019).

    Article  ADS  Google Scholar 

  22. R. Chen, J. Li, A. Dobrovolsky, S. Gonzalez-Carrero, M. Gerhard, M. E. Messing, V. Chirvony, J. Pérez-Prieto, and I. G. Scheblykin, Adv. Opt. Mater. 8, 1901642 (2020).

  23. A. Merdasa, Y. Tian, R. Camacho, A. Dobrovolsky, E. Debroye, E. L. Unger, J. Hofkens, V. Sundström, and I. G. Scheblykin, ACS Nano 11, 5391 (2017).

    Article  Google Scholar 

  24. E. A. Podshivaylov, M. A. Kniazeva, A. O. Tarasevich, I. Y. Eremchev, A. V. Naumov, and P. A. Frantsuzov, J. Mater. Chem. C 11, 8570 (2023).

    Article  Google Scholar 

  25. A. Merdasa, M. Bag, Yu. Tian, E. Källman, A. Dobrovolsky, and I. Scheblykin, J. Phys. Chem. C 120, 10711 (2016).

    Article  Google Scholar 

  26. Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, ACS Nano 9, 10386 (2015).

    Article  Google Scholar 

  27. B.-W. Hsu, Y.-T. Chuang, C.-Y. Cheng, C.-Y. Chen, Y.-J. Chen, A. Brumberg, L. Yang, Y.-Sh. Huang, R. D. Schaller, L.-J. Chen, Ch.-S. Chuu, and H.‑W. Lin, ACS Nano 15, 11358 (2021).

    Article  Google Scholar 

  28. H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, Nat. Commun. 10, 1088 (2019).

    Article  ADS  Google Scholar 

  29. Y. A. Darmawan, M. Yamauchi, and S. Masuo, J. Phys. Chem. C 124, 18770 (2020).

    Article  Google Scholar 

  30. D. A. Hines, M. A. Becker, and P. V. Kamat, J. Phys. Chem. 116, 13452 (2012).

    Google Scholar 

  31. W. G. J. H. M. van Sark and P. L. T. M. Frederix, J. Phys. Chem. 105, 8281 (2001).

    Article  Google Scholar 

  32. M. Sykora, A. Y. Koposov, J. A. McGuire, R. K. Schulze, O. Tretiak, J. M. Pietryga, and V. I. Klimov, ACS Nano 4, 2021 (2010).

    Article  Google Scholar 

  33. E. J. Juarez-Perez, L. K. Ono, I. Uriarte, E. J. Cocinero, and Ya. Qi, ACS Appl. Mater Interfaces 11, 12586 (2019).

    Article  Google Scholar 

  34. P. Huang, S. Sun, H. Lei, Y. Zhang, H. Qin, and H. Zhong, eLight 3, 3728 (2023).

  35. L. Protesescu, S. Yakunin, M. Bodnarchuk, F. Krieg, R. Caputo, Ch. H. Hendon, R. Yang, A. Walsh, and M. Kovalenko, Nano Lett. 15, 3692 (2015).

    Article  ADS  Google Scholar 

  36. I. Yu. Eremchev, N. A. Lozing, A. A. Baev, A. O. Tarasevich, M. G. Gladush, A. A. Rozhentsov, and A. V. Naumov, JETP Lett. 108, 30 (2018).

    Article  ADS  Google Scholar 

  37. I. Yu. Eremchev, D. V. Prokopova, N. N. Losevskii, I. T. Mynzhasarov, S. P. Kotova, and A. V. Naumov, Phys. Usp. 65, 617 (2022).

    Article  ADS  Google Scholar 

  38. I. Yu. Eremchev, M. Yu. Eremchev, and A. V. Naumov, Phys. Usp. 62, 294 (2019).

    Article  ADS  Google Scholar 

  39. I. Yu. Eremchev, A. O. Tarasevich, M. A. Kniazeva, J. Li, A. V. Naumov, and I. G. Scheblykin, Nano Lett. 23, 2087 (2023).

    Article  ADS  Google Scholar 

  40. Y. S. Park, J. Lim, N. S. Makarov, and V. I. Klimov, Nano Lett. 17, 5607 (2017).

    Article  ADS  Google Scholar 

  41. I. S. Osad’ko, I. Yu. Eremchev, and A. V. Naumov, J. Phys. Chem. 119, 22646 (2015).

    Article  Google Scholar 

  42. G. Yuan, D. E. Gomez, N. Kirkwood, K. Boldt, and P. Mulvaney, ACS Nano 12, 3397 (2018).

    Article  Google Scholar 

  43. K. E. Shulenberger, S. C. C.'t Wallant, M. D. Klein, A. R. McIsaac, T. Goldzak, D. B. Berkinsky, H. Utzat, U. Barotov, T. V. Voorhis, and M. G. Bawendi, Nano Lett. 21, 7457 (2021).

    Article  ADS  Google Scholar 

  44. J. Zhao, O. Chen, D. B. Strasfeld, and M. G. Bawendi, Nano Lett. 12, 4477 (2012).

    Article  ADS  Google Scholar 

  45. N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, and V. I. Klimov, Nano Lett. 16, 2349 (2016).

    Article  ADS  Google Scholar 

  46. Y. Li, T. Ding, X. Luo, Z. Chen, X. Liu, X. Lu, and K. Wu, Nano Res. 12, 619 (2019).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. FFUU-2022-0003 for the Institute of Spectroscopy, Russian Academy of Sciences), by the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. NSh-776.2022.1.2), and in part by the Russian Science Foundation (project no. 23-19-00884, synthesis of perovskite nanoparticles).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Eremchev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baitova, V.A., Knyazeva, M.A., Mukanov, I.A. et al. Evolution of the Luminescence Properties of Single CsPbBr3 Perovskite Nanocrystals During Photodegradation. Jetp Lett. 118, 560–567 (2023). https://doi.org/10.1134/S002136402360283X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402360283X

Navigation