Skip to main content
Log in

Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We investigate how a change in dimensionality of interstitial electronic states in the Ca2N electride influences its electronic structure and transport properties. Employing the Maximally Localized Wannier Functions (MLWF) approach, we successfully describe the interstitial quasi-atomic states (ISQ) located in non-nuclear Wyckoff positions between Ca atoms. This allowed us to conclude that the electride subsystem is responsible for the formation of a band structure in the vicinity of the Fermi level in all Ca2N phases observed under pressure. Using the obtained MLWF basis, we calculate the electronic and thermal conductivity, along with the Seebeck coefficient, by solving the semi-classical Boltzmann transport equations. The results achieved permit the conclusion that the counterintuitive increase in resistance under pressure observed experimentally is attributed to enhanced localization of interstitial electronic states through electride subspace dimensionality transformations. We also established a substantial anisotropy in the transport properties within the 2D phase and found that the conductivity inside the plane of the electride layers is provided by electrons, while along the direction normal to the layers, holes become the majority carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. P. Edwards, Science (Washington, DC, U. S.) 333, 49 (2011).

    Article  ADS  Google Scholar 

  2. Q. Zhu, T. Frolov, and K. Choudhary, Matter 1, 1293 (2019).

    Article  Google Scholar 

  3. D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, and V. I. Anisimov, JETP Lett. 109, 387 (2019).

    Article  ADS  Google Scholar 

  4. D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, A. R. Oganov, and V. I. Anisimov, J. Phys.: Condens. Matter 32, 445501 (2020).

  5. D. Y. Novoselov, D. M. Korotin, A. O. Shorikov, V. I. Anisimov, and A. R. Oganov, J. Phys. Chem. C 125, 15724 (2021).

    Article  Google Scholar 

  6. D. Y. Novoselov, V. I. Anisimov, and A. R. Oganov, Phys. Rev. B 103, 235126 (2021).

  7. H. Hosono and M. Kitano, Chem. Rev. 121, 3121 (2021).

    Article  Google Scholar 

  8. Z. Wan, W. Xu, T. Yang, and R. Zhang, Phys. Rev. B 106, L060506 (2022).

  9. S. Liu, C. Wang, H. Jeon, Y. Jia, and J. H. Cho, Phys. Rev. B 105, L220401 (2022).

  10. Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, and T. Cui, Phys. Rev. Lett. 127, 157002 (2021).

  11. A. Fujimori, Nat. Mater. 21, 1217 (2022).

    Article  ADS  Google Scholar 

  12. M. A. Mazannikova, D. M. Korotin, A. O. Shorikov, V. I. Anisimov, and D. Y. Novoselov, J. Phys. Chem. C 127, 8714 (2023).

    Article  Google Scholar 

  13. K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, Nature (London, U.K.) 494, 336 (2013).

    Article  ADS  Google Scholar 

  14. X. Zhang and G. Yang, Phys. Chem. Lett. 11, 3841 (2020).

    Article  Google Scholar 

  15. J. Li, S. Inagi, T. Fuchigami, H. Hosono, and S. Ito, Electrochem. Commun. 44, 45 (2014).

    Article  Google Scholar 

  16. T. Kocabas, A. Ozden, I. Demiroglu, D. Çakır, and C. Sevik, J. Phys. Chem. Lett. 9, 4267 (2018).

    Article  Google Scholar 

  17. B. Sa, R. Xiong, C. Wen, Y. L. Li, P. Lin, Q. Lin, and Z. Sun, J. Phys. Chem. C 124, 7683 (2020).

    Article  Google Scholar 

  18. D. Liu and D. Tomanek, Nano Lett. 19, 1359 (2019).

    Article  ADS  Google Scholar 

  19. H. Tang, B. Wan, B. Gao, et al., Adv. Sci. 5, 1800666 (2018).

  20. D. Y. Novoselov, M. A. Mazannikova, D. M. Korotin, A. O. Shorikov, M. A. Korotin, V. I. Anisimov, and A. R. Oganov, J. Phys. Chem. Lett. 13, 7155 (2022).

    Article  Google Scholar 

  21. I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).

  22. G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, Comput. Phys. Commun. 185, 422 (2014).

    Article  ADS  Google Scholar 

  23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. B 77, 3865 (1996).

    Article  ADS  Google Scholar 

  24. P. Giannozzi, S. Baroni, N. Bonini, et al., Phys. Condens. Matter 21, 395502 (2009).

  25. A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014).

    Article  ADS  Google Scholar 

  26. R. F. Bader, Chem. Rev. 91, 893 (1991).

    Article  Google Scholar 

  27. A. Otero-de-la-Roza, E. R. Johnson, and V. Luaña, Comp. Phys. Commun. 185, 1007 (2014).

    Article  ADS  Google Scholar 

  28. A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew Chem. Int. Ed. Engl. 36, 1808 (1997).

    Article  Google Scholar 

  29. Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, and V. Prakapenka, Nature (London, U.K.) 458, 182 (2009).

    Article  ADS  Google Scholar 

  30. T. Matsuoka and K. Shimizu, Nature (London, U.K.) 458, 186 (2009).

    Article  ADS  Google Scholar 

  31. T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa, J. Phys. Soc. Jpn. 74, 2391 (2005).

    Article  ADS  Google Scholar 

  32. N. W. Ashcroft, Nature (London, U.K.) 458, 158 (2009).

    Article  ADS  Google Scholar 

  33. S. Kasap, Thermoelectric Effects in Metals: Thermocouples (Dep. Electr. Eng. Univ. of Saskatchewan, Canada, 2001).

    Google Scholar 

  34. D. M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano (CRC, Boca Raton, FL, 2006).

    Google Scholar 

  35. D.Y. Novoselov, M.A. Mazannikova, D.M. Korotin, A.O. Shorikov, V.I. Anisimov, and A.R. Oganov, Phys. Chem. Chem. Phys. 25, 30960 (2023).

Download references

Funding

The DFT and MLWF parts of the study were supported by the Russian Science Foundation (project no. 19-72-30043). The results of solving the Boltzmann transport equations were obtained within the state assignment of the Ministry of Science and Higher Education of the Russian Federation on the theme “Electron” no. 122021000039-4, which was carried out within the framework of the youth project of the IPM Ural Branch of the Russian Academy of Sciences no. 22-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mazannikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazannikova, M.A., Korotin, D.M., Anisimov, V.I. et al. Dimensionality-Driven Evolution of Electronic Structure and Transport Properties in Pressure-Induced Phases of Ca2N Electride. Jetp Lett. 118, 651–657 (2023). https://doi.org/10.1134/S0021364023602762

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023602762

Navigation