Skip to main content
Log in

Influence of the Gd Concentration on Superconducting Properties in Second-Generation High-Temperature Superconducting Wires

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Systematic studies of second-generation high-temperature superconducting wires with Gd excess relative to the stoichiometric GdBa2Cu3O7 composition are reported. It has been revealed that filamentary defects in the form of non-superconducting Gd2CuO4 phase located along the ab plane are formed during film growth. These inclusions lead to a change in the pinning mechanism of the vortex structure, due to which the peak of the critical current at +15% Gd is clearly observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. D. Uglietti, Supercond. Sci. Technol. 33, 053001 (2019).

  2. Y. H. Zhou, D. Park, and Y. Iwasa, Nat. Sci. Rev. 10, 3 (2023).

    Google Scholar 

  3. M. T. Naus, R. W. Heussner, A. A. Squitieri, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 7, 1122 (1997).

    Article  ADS  Google Scholar 

  4. A. Godeke, M. C. Jewell, C. M. Fischer, A. A. Squitieri, P. J. Lee, and D. C. Larbalestier, J. Appl. Phys. 97, 9 (2005).

    Article  Google Scholar 

  5. L. Rossi, IEEE Trans. Appl. Supercond. 17, 1005 (2007).

    Article  ADS  Google Scholar 

  6. K. I. Sasaki, T. Nakamoto, N. Kimura, T. Tomaru, T. Ogitsu, N. Higashi, and T. Ichihara, IEEE Trans. Appl. Supercond. 17, 1083 (2007).

    Article  ADS  Google Scholar 

  7. B. Turck, IEEE Trans. Magn. 32, 2264 (1996).

    Article  ADS  Google Scholar 

  8. N. Mitchell, D. Bessette, R. Gallix, C. Jong, J. Knaster, P. Libeyre, C. Sborchia, and F. Simon, IEEE Trans. Appl. Supercond. 18, 435 (2008).

    Article  ADS  Google Scholar 

  9. S. Zhang, S. Xu, Z. Fan, P. Jiang, Z. Han, G. Yang, and Y. Chen, Supercond. Sci. Technol. 31, 125006 (2018).

  10. G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  11. L. Bottura, S. Prestemon, L. Rossi, and A. V. Zlobin, Front. Phys. 10, 935196 (2022).

  12. E. Ban, Y. Matsuoka, T. Yoshimura, and K. Takahashi, Thin Solid Films 338, 118 (1999).

    Article  ADS  Google Scholar 

  13. M. Inoue, S. Nishimura, T. Kuga, M. Kiuchi, T. Kiss, M. Takeo, T. Matsushita, Y. Iijima, K. Kakimoto, T. Saitoh, S. Awaji, K. Watanabe, and Y. Shiohara, Phys. C (Amsterdam, Neth.) 372, 794 (2002).

  14. M. Iwakuma, K. Toyota, M. Nigo, T. Kiss, K. Funaki, Y. Iijima, T. Saitoh, Y. Yamada, and Y. Shiohara, Phys. C (Amsterdam, Neth.) 412, 983 (2004).

  15. V. Chepikov, N. Mineev, P. Degtyarenko, S. Lee, V. Petrykin, A. Ovcharov, A. Vasiliev, A. Kaul, V. Amelichev, A. Kamenev, A. Molodyk, and S. Samoilenkov, Supercond. Sci. Technol. 30, 124001 (2017).

  16. S. M. Choi, G. M. Shin, and S. I. Yoo, Phys. C (Amsterdam, Neth.) 485, 154 (2013).

  17. K. Nakashima, N. Chikumoto, A. Ibi, S. Miyata, Y. Yamada, T. Kubo, A. Suzuki, and T. Terai, Phys. C (Amsterdam, Neth.) 463, 665 (2007).

  18. E. Mezzetti, B. Minetti, D. Andreone, R. Cherubini, L. Gherardi, and P. Metra, J. Supercond. 5, 185 (1992).

    Article  ADS  Google Scholar 

  19. D. Huang, H. Gu, H. Shang, T. Li, B. Xie, Q. Zou, D. Chen, W. Chu, and F. Ding, Supercond. Sci. Technol. 34, 045001 (2021).

  20. T. Matsunami, Y. Ichino, Y. Yoshida, A. Ichinose, and K. Matsumoto, Phys. Proc. 27, 236 (2012).

    Article  ADS  Google Scholar 

  21. M. Miura, M. Yoshizumi, Y. Sutoh, K. Nakaoka, S. Miyata, Y. Yamada, T. Izumi, Y. Shiohara, T. Goto, A. Yoshinaka, and A. Yajima, Phys. C (Amsterdam, Neth.) 468, 1643 (2008).

  22. A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

    Google Scholar 

  23. J. G. Lin, C. Y. Huang, Y. Y. Xue, C. W. Chu, X. W. Cao, and J. C. Ho, Phys. Rev. B 51, 12900 (1995).

    Article  ADS  Google Scholar 

  24. A. Molodyk, S. Samoilenkov, A. Markelov, et al., Sci. Rep. 11, 2084 (2021).

    Article  Google Scholar 

  25. A. V. Ovcharov, P. N. Degtyarenko, V. N. Chepikov, A. L. Vasiliev, S. Yu. Gavrilkin, I. A. Karateev, A. Yu. Tsvetkov, and A. R. Kaul, Sci. Rep. 9, 15235 (2019).

    Article  ADS  Google Scholar 

  26. O. Y. Gorbenko, S. V. Samoilenkov, I. E. Graboy, and A. R. Kaul, Chem. Mater. 14, 4026 (2002).

    Article  Google Scholar 

  27. E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).

    Article  ADS  Google Scholar 

  28. V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

Download references

Funding

Magnetic measurements were supported by the Russian Science Foundation (project no. 22-22-00570). Microstructure studies and analysis of the results were supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 075-01129-23-00 for the Joint Institute for High Temperatures, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Degtyarenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degtyarenko, P.N., Sadakov, A.V., Ovcharov, A.V. et al. Influence of the Gd Concentration on Superconducting Properties in Second-Generation High-Temperature Superconducting Wires. Jetp Lett. 118, 579–584 (2023). https://doi.org/10.1134/S0021364023602671

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023602671

Navigation