Skip to main content
Log in

Ab Initio Study of the Adsorption of Li and Na on the Surface of a MgCl2 Monolayer

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Ab initio calculations have been performed to study the dynamic stability of a new MgCl2 monolayer and the formation of point defects in it. The possibility of using the MgCl2 monolayer in Li- and Na-ion batteries has been analyzed. It has been shown that the MgCl2 monolayer has the dynamic stability but can contain point defects. These point defects can improve the adsorption capability of the MgCl2 monolayer with respect to Li and Na atoms. The results obtained in this work indicate that the MgCl2 monolayer is a promising material for application in Li- and Na-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. A. Kistanov, S. A. Shcherbinin, R. Botella, A. Davletshin, and W. Cao, J. Phys. Chem. Lett. 13, 2165 (2022). https://doi.org/10.1021/acs.jpclett.2c00367

    Article  Google Scholar 

  2. I. T. Lima, R. Vasconcelos, R. Gargano, and E. N. C. Paurad, New J. Chem. 44, 8833 (2020). https://doi.org/10.1039/D0NJ01264E

    Article  Google Scholar 

  3. G. Bhattacharyya, I. Choudhuri, P. Bhauriyal, P. Garg, and B. Pathak, Nanoscale 10, 22280 (2018). https://doi.org/10.1039/C8NR07429A

    Article  Google Scholar 

  4. F. Lu, W. Wang, X. Luo, X. Xie, Y. Cheng, H. Dong, H. Liu, and W.-H. Wang, Appl. Phys. Lett. 108, 132104 (2016). https://doi.org/10.1063/1.4945366

  5. W. Mrozik, M. A. Rajaeifar, O. Heidrich, and P. Christensen, Energy Environ. Sci. 14, 6099 (2021). https://doi.org/10.1039/D1EE00691F

    Article  Google Scholar 

  6. A. A. Kistanov, D. R. Kripalani, Y. Cai, S. V. Dmitriev, K. Zhou, and Y.-W. Zhang, J. Mater. Chem. A 7, 2901 (2019). https://doi.org/10.1039/C8TA11503F

    Article  Google Scholar 

  7. I. Kochetkov, T. T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, and L. Nazar, Energy Environ. Sci. 15, 3933 (2022). https://doi.org/10.1039/D2EE00803C

    Article  Google Scholar 

  8. K. Giagloglou, J. L. Payne, Ch. Crouch, R. K. B. Gover, P. A. Connor, and J. T. S. Irvinl, J. Electrochem. Soc. 165, A3510 (2018). https://doi.org/10.4191/kcers.2019.56.3.05

    Article  Google Scholar 

  9. Y. Li, L. Shi, X. Gao, J. Wang, Y. Hu, X. Wu, and Z. Wen, Chem. Eng. J. 421, 127853 (2021). https://doi.org/10.1016/j.cej.2020.127853

  10. T. Li, Z. X. Chen, Y. L. Cao, X. P. Ai, and H. X. Yang, Electrochim. Acta 68, 202 (2012). https://doi.org/10.1016/j.electacta.2012.02.061

    Article  ADS  Google Scholar 

  11. J. Zhou, L. Shen, M. D. Costa, K. A. Persson, S. P. Ong, P. Huck, Y. Lu, X. Ma, Y. Chen, H. Tang, and Y. P. Feng, Sci. Data 6, 86 (2019). https://doi.org/10.1038/s41597-019-0097-3

    Article  Google Scholar 

  12. D. H. Fairbrother, J. G. Roberts, and G. A. Somorjai, Surf. Sci. 399, 109 (1998). https://doi.org/10.1016/S0039-6028(97)00816-9

    Article  ADS  Google Scholar 

  13. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  15. A. Togo, L. Chaput, T. Tadano, and I. Tanaka, J. Phys.: Condens. Matter 35, 353001 (2023). https://doi.org/10.1088/1361-648X/acd831

  16. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

  17. V. L. Deringer, A. L. Tchougreeff, and R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011). https://doi.org/10.1021/jp202489

    Article  Google Scholar 

  18. R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, J. Comput. Chem. 41, 1931 (2020). https://doi.org/10.1002/jcc.26353

    Article  Google Scholar 

  19. G. Bhattacharyya, I. Choudhuri, P. Bhauriyal, P. Garg, and B. Pathak, Nanoscale 10, 22280 (2018). https://doi.org/10.1039/c8nr07429a

    Article  Google Scholar 

  20. J. Zhu and U. Schwingenschlogl, ACS Appl. Mater. Interfaces 6, 11675 (2014). https://doi.org/10.1021/am502469m

    Article  Google Scholar 

  21. H. R. Mahida, A. Patel, D. Singh, Y. Sonvane, P. B. Thakor, and R. Ahuja, Superlatt. Microstruct. 162, 107132 (2022). https://doi.org/10.1016/j.spmi.2021.107132

  22. H.-P. Komsa and A. V. Krasheninnikov, Mater. Today, 7 (2022). https://doi.org/10.1016/B978-0-12-820292-0.00008-2

  23. S. Abdolhosseinzadeh, Ch. Zhang, R. Schneider, M. Shakoorioskooie, F. Nüesch, and J. Heier, Adv. Mater. 34, 2103660 (2022). https://doi.org/10.1002/adma.202103660

  24. A. A. Kistanov, V. R. Nikitenko, and O. V. Prezhdo, J. Phys. Chem. Lett. 12, 620 (2021). https://doi.org/10.1021/acs.jpclett.0c03608

    Article  Google Scholar 

  25. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, Chem. Phys. Lett. 418, 132 (2006). https://doi.org/10.1016/j.cplett.2005.10.106

    Article  ADS  Google Scholar 

  26. X. Yu, H. Shao, X. Wang, Y. Zhu, D. Fang, and J. Hong, J. Mater. Chem. A 8, 3128 (2020). https://doi.org/10.1039/C9TA12600G

    Article  Google Scholar 

  27. L. S. Chumakova, A. V. Bakulin, and S. E. Kulkova, J. Exp. Theor. Phys. 134, 743 (2022). https://doi.org/10.1134/S1063776122060061

    Article  ADS  Google Scholar 

  28. A. V. Bakulin and S. E. Kulkova, J. Exp. Theor. Phys. 127, 1046 (2018). https://doi.org/10.1134/S1063776118120130

    Article  ADS  Google Scholar 

  29. A. S. Kharlamenkov, Pozharovzryvobezopasn. 31 (3), 96 (2022).

    Google Scholar 

  30. R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon, Oxford, UK, 1990).

    Book  Google Scholar 

  31. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204

Download references

ACKNOWLEDGMENTS

The equipment of the Joint Supercomputer Center, Russian Academy of Sciences was used for this work.

Funding

A.A. Kistanov acknowledges the support of the Russian Science Foundation (project no. 23-73-01001, https://rscf.ru/project/23-73-01001/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kistanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustiuzhanina, S.V., Kistanov, A.A. Ab Initio Study of the Adsorption of Li and Na on the Surface of a MgCl2 Monolayer. Jetp Lett. 118, 670–675 (2023). https://doi.org/10.1134/S0021364023602592

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023602592

Navigation