Skip to main content
Log in

Features of the Scaling of the Anomalous Hall Effect in (CoFeB)x(LiNbO3)100 − x Nanocomposite Films Below the Percolation Threshold: Manifestation of the Cotunneling Hall Conductance?

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

A scaling behavior of the anomalous Hall effect resistivity ρAHE versus the longitudinal resistivity ρ in (CoFeB)x(LiNbO3)100 − x nanocomposites with a low content of dispersed Co and Fe atoms (Nd ~ 4 × 1020 cm−3) in an amorphous LiNbO3 matrix is studied in the range x ≈ 40–48 at % below the percolation threshold xp ≈ 49 at %. A logarithmic temperature dependence of the conductivity σ ~ lnT  has been observed in the range x ≈ 44–48 at %, which is transformed in the range x ≈ 40–42 at % to a square root law lnσ ∝ ‒(T0/T)1/2, which is characteristic of cotunneling transport processes in nanocomposites. It has been found that the exponent n ≈ 0.24 in the scaling law ρAHE/x ∝ [ρ(x)]n coincides within an accuracy of 5% with the exponent n in a similar dependence for nanocomposites based on the (CoFeB)x(Al2O3)100 − x matrix with a high content Nd ~1021–1022 cm–3 and with the exponent n in a parametric dependence ρAHE ∝ [ρ(T)]n for the samples with the minimum content x ≈ 40 at %. The found features are attributed to the correlated change in the probability of cotunneling transitions in a set of more than three centers under the effect of spin–orbit coupling. The manifestation of the barrier tunneling anomalous Hall effect at granule interfaces is also p-ossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

    Article  ADS  Google Scholar 

  2. J. Sinova, S. O. Valenzuela, J. Wünderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).

    Article  ADS  Google Scholar 

  3. H. Wang, Y. Dai, G.-M. Chow, and J. Chen, Prog. Mater. Sci. 130, 100971 (2022).

  4. L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and T. Jungwirth, Nat. Rev. Mater. 7, 482 (2022).

    Article  ADS  Google Scholar 

  5. L. Šmejkal, J. Sinova, S. Nakatsuji, and T. Jungwirth, Phys. Rev. X 12, 040501 (2022).

  6. S. A. Tarasenko, V. I. Perel, and I. N. Yassievich, Phys. Rev. Lett. 93, 056601 (2004).

  7. A. Vedyayev, N. Ryzhanova, N. Strelkov, and B. Dieny, Phys. Rev. Lett. 110, 247204 (2013).

  8. A. V. Vedyayev, M. S. Titova, N. V. Ryzhanova, M. Y. Zhuravlev, and E. Y. Tsymbal, Appl. Phys. Lett. 103, 032406 (2013).

  9. A. Matos-Abiague and J. Fabian, Phys. Rev. Lett. 115, 056602 (2015).

  10. E. A. Karashtin, N. S. Gusev, I. Yu. Pashen’kin, M. V. Sapozhnikov, and A. A. Fraerman, J. Exp. Theor. Phys. 136, 1 (2023).

    Article  ADS  Google Scholar 

  11. V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).

  12. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emel’yanov, A. V. Sitnikov, K. E. Nikirui, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasil’ev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).

    Article  ADS  Google Scholar 

  13. E. V. Kuchis, Galvanomagnetic Effects and Methods for Their Study (Radio Svyaz’, Moscow, 1990) [in Russian].

    Google Scholar 

  14. S. N. Nikolaev, K. Yu. Chernoglazov, A. V. Emelyanov, A. V. Sitnikov, A. N. Taldenkov, T. D. Patsaev, A. L. Vasil’ev, E. A. Gan’shina, V. A. Demin, N. S. Averkiev, A. B. Granovsky, and V. V. Rylkov, JETP Lett. 118, 58 (2023).

    Article  ADS  Google Scholar 

  15. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).

    Article  ADS  Google Scholar 

  16. A. Pakhomov, X. Yan, and B. Zhao, Appl. Phys. Lett. 67, 3497 (1995).

    Article  ADS  Google Scholar 

  17. S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. B 77, 165103 (2008).

  18. B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, E. Z. Meilikhov, V. V. Ryl’kov, M. V. Sedova, N. Negre, M. Goiran, and J. Leotin, JETP Lett. 70, 90 (1999).

    Article  ADS  Google Scholar 

  19. A. V. Vedyaev, A. B. Granovskii, and O. A. Kotel’nikova, Transport Phenomena in Disordered Ferromagnetic Alloys (Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  20. A. V. Vedyaev, A. B. Granovskii, A. V. Kalitsov, and F. Brauers, J. Exp. Theor. Phys. 85, 1204 (1997).

    Article  ADS  Google Scholar 

  21. Y. Tian, L. Ye, and X. Jin, Phys. Rev. Lett. 103, 087206 (2009).

  22. D. Hou, G. Su, Y. Tian, X. Jin, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 114, 217203 (2015).

  23. L. V. Lutsev, M. N. Kopytin, A. V. Sitnikov, and O. V. Stognei, Phys. Solid State 47, 2169 (2005).

    Article  ADS  Google Scholar 

  24. H. Meier, M. Y. Kharitonov, and K. B. Efetov, Phys. Rev. B 80, 045122 (2009).

  25. X. Liu, S. Shen, Z. Ge, W. L. Lim, M. Dobrowolska, and J. K. Furdyna, Phys. Rev. B 83, 144421 (2011).

  26. A. Shitade and N. Nagaosa, J. Phys. Soc. Jpn. 81, 083704 (2012).

  27. A. V. Vedyaev and A. B. Granovsky, Sov. Phys. Solid State 28, 1293 (1986).

    Google Scholar 

  28. X.-J. Liu, X. Liu, and J. Sinova, Phys. Rev. B 84, 165304 (2011).

Download references

ACKNOWLEDGMENTS

The data on the film structures were obtained using the equipment of the Resource Center, National Research Center Kurchatov Institute.

Funding

This work was supported in part by the Russian Science Foundation (project no. 22-29-00392).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Nikolaev or V. V. Rylkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, S.N., Chernoglazov, K.Y., Bugaev, A.S. et al. Features of the Scaling of the Anomalous Hall Effect in (CoFeB)x(LiNbO3)100 − x Nanocomposite Films Below the Percolation Threshold: Manifestation of the Cotunneling Hall Conductance?. Jetp Lett. 118, 508–513 (2023). https://doi.org/10.1134/S0021364023602348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023602348

Navigation