Skip to main content
Log in

Mysteries of Water and Other Anomalous Liquids: “Slow” Sound and Relaxing Compressibility and Heat Capacity (Brief Review)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Reasons for the existence of “fast” sound at terahertz frequencies in various liquids have been analyzed. It has been shown that the fast sound speed is described well by the conventional formula from the theory of elasticity \({{V}_{l}} = ((B(\omega ) + 4{\text{/}}3G(\omega )){\text{/}}\rho {{)}^{{1/2}}}\), where ρ is the density of a liquid and \(B(\omega )\) and \(G(\omega )\) are the bulk and shear moduli at the frequency ω, respectively. The excess of the speed of fast sound over the speed of normal sound in “normal” liquids is 10–20% and is almost completely determined by the contribution of the shear modulus \(G(\omega )\) at high frequencies, and vanishes on the Frenkel line. At the same time, the huge excess (50–120%) of the fast speed of sound over the speed of normal sound in some liquids (called “anomalous”), such as water and tellurium melt, is due mainly to the strong frequency dependence of the bulk modulus \(B(\omega )\). Anomalously low relaxing bulk moduli were studied in our previous works for many oxide and chalcogenide glasses near smeared pressure-induced phase transitions. In anomalous liquids, smeared phase transitions also occur in a wide temperature and pressure region, which sharply reduces the bulk moduli and speeds of sound. Thus, the record large difference between speeds of fast and normal sound in anomalous liquids is due not to anomalously fast sound but to the fact that normal sound in such liquids is anomalously “slow” and bulk moduli are anomalously low. Ultrasonic studies of low- and high-density amorphous water ices show that their bulk moduli are indeed a factor of 4–5 higher than the bulk modulus of water. In addition, because of smeared phase transitions, the heat capacities of water and tellurium melt are a factor of 1.5–2 higher than those for normal liquids; i.e., anomalous liquids are characterized not only by an anomalous (nonmonotonic) behavior but also by anomalous magnitudes of physical quantities for most of the available measurement methods. A similar anomalous increase in the compressibility and heat capacity is observed for all fluids in the close vicinity of the liquid–gas critical point. In this case, anomalously fast sound is observed at terahertz frequencies, which is also due to a sharp increase in the bulk modulus \(B(\omega )\) at high frequencies. At the same time, high compressibility and heat capacity, as well as a large excess of the speed of fast sound over the speed of normal sound, for anomalous liquids and glasses near smeared phase transitions are not necessarily due to the proximity of critical points and occur in any scenario of the smeared phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. https://water.lsbu.ac.uk/water/water_anomalies.html.

  2. P. Gallo, K. Amann-Winkel, C. Angell, et al., Chem. Rev. 116, 7463 (2016).

    Article  Google Scholar 

  3. W. C. Röntgen, Ann. Phys. Chem. 281, 91 (1892).

    Article  ADS  Google Scholar 

  4. P. Poole, F. Sciortino, U. Essman, and H. E. Stanley, Nature (London, U.K.) 360, 324 (1992).

    Article  ADS  Google Scholar 

  5. C. Huang, K. T. Wikfeldt, T. Tokushima, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 15214 (2009).

    Article  ADS  Google Scholar 

  6. A. K. Soper, Pure Appl. Chem. 82, 1855 (2010).

    Article  Google Scholar 

  7. F. Kakinuma, T. Okada, and S. Ohno, J. Phys. Soc. Jpn. 55, 284 (1986).

    Article  ADS  Google Scholar 

  8. K. Takimoto and H. Endo, Phys. Chem. Liq 12, 141 (1982).

    Article  Google Scholar 

  9. Y. Kajihara, M. Inui, K. Ohara, and K. Matsuda, J. Phys.: Condens. Matter 32, 274001 (2020).

  10. Y. Kajihara, M. Inui, S. Hosokawa, K. Matsuda, and A. Q. R. Baron, J. Phys.: Condens. Matter 20, 494244 (2008).

  11. Y. Kajihara, M. Inui, K. Matsuda, and K. Ohara, arXiv: 2201.10065.

  12. Y. Kajihara, M. Inui, K. Matsuda, T. Nagao, and K. Ohara, Phys. Rev. B 86, 214202 (2012).

  13. Y. Tsuchiya, J. Phys.: Condens. Matter 3, 3163 (1991).

    ADS  Google Scholar 

  14. M. Kassem, C. Benmore, T. Usuki, K. Ohara, A. Tverjanovich, M. Bokova, V. V. Brazhkin, and E. Bychkov, J. Phys. Chem. Lett. 13, 10843 (2022).

    Article  Google Scholar 

  15. V. V. Brazhkin, S. V. Popova, and R. N. Voloshin, High Press. Res. 15, 267 (1997).

    Article  ADS  Google Scholar 

  16. E. Yu. Tonkov, Phase Diagrams of Elements at High Pressure (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  17. D. A. Young, Phase Diagrams of the Elements (Lawrence Livermore Lab., California Univ., Livermore, 1975).

  18. E. Rapoport, J. Chem. Phys. 46, 2891 (1967).

    Article  ADS  Google Scholar 

  19. E. Rapoport, J. Chem. Phys. 48, 1433 (1968).

    Article  ADS  Google Scholar 

  20. S. M. Stishov, Sov. Phys. Usp. 11, 831 (1968).

    Google Scholar 

  21. L. I. Aptekar, Sov. Phys. Dokl. 24, 993 (1979).

    ADS  Google Scholar 

  22. E. G. Ponyatovsky, J. Phys.: Condens. Matter 15, 6123 (2003).

    ADS  Google Scholar 

  23. V. V. Brazhkin, R. N. Voloshin, and S. V. Popova, JETP Lett. 50, 424 (1989).

    ADS  Google Scholar 

  24. V. V. Brazhkin, R. N. Voloshin, and S. V. Popova, High Press. Res. 4, 348 (1990).

    Article  ADS  Google Scholar 

  25. V. V. Brazhkin, R. N. Voloshin, S. V. Popova, and A. G. Umnov, Phys. Lett. A 154, 413 (1991).

    Article  ADS  Google Scholar 

  26. V. V. Brazhkin, R. N. Voloshin, S. V. Popova, and A. G. Umnov, High Press. Res. 6, 363 (1991).

    Article  ADS  Google Scholar 

  27. V. V. Brazhkin, R. N. Voloshin, S. V. Popova, and A. G. Umnov, High Press. Res. 10, 454 (1992).

    Article  ADS  Google Scholar 

  28. R. N. Voloshin, V. V. Brazhkin, and S. V. Popova, High Press. Res. 13, 51 (1994).

    Article  ADS  Google Scholar 

  29. V. V. Brazhkin, A. G. Lyapin, S. V. Popova, and R. N. Voloshin, New Types of Phase Transitions: Phenomenology, Concepts, and Terminology (Kluwer Academic, Dordrecht, 2002).

    Google Scholar 

  30. V. V. Brazhkin, R. N. Voloshin, S. V. Popova, and A. G. Umnov, J. Phys.: Condens. Matter 4, 1419 (1992).

    ADS  Google Scholar 

  31. A. G. Umnov, V. V. Brazhkin, S. V. Popova, and R. N. Voloshin, J. Phys.: Condens. Matter 4, 1427 (1992).

    ADS  Google Scholar 

  32. A. G. Umnov and V. V. Brazhkin, High Temp.–High Press. 25, 221 (1994).

    Google Scholar 

  33. Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, and K. Funakoshi, Nature (London, U.K.) 403, 170 (2000).

    Article  ADS  Google Scholar 

  34. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi, and O. Shimomura, Science (Washington, DC, U. S.) 306, 848 (2004).

    Article  ADS  Google Scholar 

  35. G. Monaco, S. Falconi, W. A. Crichton, and M. Mezouar, Phys. Rev. Lett. 90, 255701 (2003).

  36. L. Henry, M. Mezouar, G. Garbarino, D. Sifre, G. Weck, and F. Datchi, Nature (London, U.K.) 584, 382 (2020).

    Article  Google Scholar 

  37. V. V. Brazhkin and A. G. Lyapin, J. Phys.: Condens. Matter 15, 6059 (2003).

    ADS  Google Scholar 

  38. V. V. Brazhkin, Y. Katayama, Y. Inamura, M. V. Kondrin, A. G. Lyapin, S. V. Popova, and R. N. Voloshin, JETP Lett. 78, 393 (2003).

    Article  ADS  Google Scholar 

  39. V. V. Brazhkin, Y. Katayama, A. G. Lyapin, and H. Saitoh, Phys. Rev. B 89, 104203 (2014).

  40. V. V. Brazhkin, A. G. Lyapin, S. V. Popova, Y. Katayama, H. Saitoh, and W. Utsumi, J. Phys.: Condens. Matter 19, 246104 (2007).

  41. V. V. Brazhkin, Y. Katayama, M. V. Kondrin, T. Hattori, A. G. Lyapin, and H. Saitoh, Phys. Rev. Lett. 100, 145701 (2008).

  42. V. V. Brazhkin, M. Kanzaki, K. Funakoshi, and Y. Katayama, Phys. Rev. Lett. 102, 115901 (2009).

  43. V. V. Brazhkin, Y. Katayama, M. V. Kondrin, A. G. Lyapin, and H. Saitoh, Phys. Rev. B 82, 140202 (2010).

  44. V. V. Brazhkin, I. Farnan, K. Funakoshi, M. Kanzaki, Y. Katayama, A. G. Lyapin, and H. Saitoh, Phys. Rev. Lett. 105, 115701 (2010).

  45. T. Hattori, T. Kinoshita, T. Narushima, K. Tsuji, and Y. Katayama, Phys. Rev. B 73, 054203 (2006).

  46. K. Fuchizaki, N. Hamaya, and Y. Katayama, J. Phys. Soc. Jpn. 82, 033003 (2013).

  47. V. V. Brazhkin and A. G. Lyapin, JETP Lett. 78, 542 (2003).

    Article  ADS  Google Scholar 

  48. H. Tanaka, J. Chem. Phys. 153, 130901 (2020).

  49. O. B. Tsiok, V. V. Brazhkin, A. G. Lyapin, and L. G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).

    Article  ADS  Google Scholar 

  50. V. V. Brazhkin, Y. Katayama, K. Trachenko, O. B. Tsiok, A. G. Lyapin, E. Artacho, M. Dove, G. Ferlat, Y. Inamura, and H. Saitoh, Phys. Rev. Lett. 101, 035702 (2008).

  51. T. Loerting, V. V. Brazhkin, and T. Morishita, Adv. Chem. Phys. 143, 29 (2009).

    Google Scholar 

  52. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, J. Phys. Chem. B 120, 358 (2016).

    Article  Google Scholar 

  53. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, J. Exp. Theor. Phys. 123, 308 (2016).

    Article  ADS  Google Scholar 

  54. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, Phys. Rev. B 95, 054205 (2017).

  55. V. V. Brazhkin, E. Bychkov, and O. B. Tsiok, J. Exp. Theor. Phys. 125, 451 (2017).

    Article  ADS  Google Scholar 

  56. V. V. Brazhkin and O. B. Tsiok, Phys. Rev. B 96, 134111 (2017).

  57. O. B. Tsiok and V. V. Brazhkin, J. Exp. Theor. Phys. 127, 1118 (2018).

    Article  ADS  Google Scholar 

  58. E. Soignard, O. B. Tsiok, A. S. Tverjanovich, A. Bytchkov, A. Sokolov, V. V. Brazhkin, C. J. Benmore, and E. Bychkov, J. Phys. Chem. B 124, 430 (2020).

    Article  Google Scholar 

  59. V. V. Brazhkin, E. Bychkov, A. S. Tver’yanovich, and O. B. Tsiok, J. Exp. Theor. Phys. 130, 571 (2020).

    Article  ADS  Google Scholar 

  60. O. B. Tsiok, V. V. Brazhkin, A. S. Tverjanovich, and E. Bychkov, J. Exp. Theor. Phys. 134, 51 (2022).

    Article  ADS  Google Scholar 

  61. V. V. Brazhkin, A. G. Lyapin, O. V. Stalgorova, E. L. Gromnitskaya, S. V. Popova, and O. B. Tsiok, J. Non. Cryst. Solids 212, 49 (1997).

    Article  ADS  Google Scholar 

  62. O. B. Tsiok, V. V. Bredikhin, V. A. Sidorov, and L. G. Khvostantsev, High Press. Res. 10, 523 (1992).

    Article  ADS  Google Scholar 

  63. O. Mishima, L. D. Calvert, and E. Whalley, Nature (London, U.K.) 310, 393 (1984).

    Article  ADS  Google Scholar 

  64. O. V. Stal’gorova, E. L. Gromnitskaya, V. V. Brazhkin, and A. G. Lyapin, JETP Lett. 69, 694 (1999).

    Article  ADS  Google Scholar 

  65. E. L. Gromnitskaya, O. V. Stal’gorova, V. V. Brazhkin, and A. G. Lyapin, Phys. Rev. B 64, 094205 (2001).

  66. A. G. Lyapin, O. V. Stal’gorova, E. L. Gromnitskaya, and V. V. Brazhkin, J. Exp. Theor. Phys. 94, 283 (2002).

    Article  ADS  Google Scholar 

  67. E. L. Gromnitskaya, O. V. Stal’gorova, A. G. Lyapin, V. V. Brazhkin, and O. B. Tarutin, JETP Lett. 78, 488 (2003).

    Article  ADS  Google Scholar 

  68. E. L. Gromnitskaya, A. G. Lyapin, O. V. Stalgorova, I. V. Danilov, and V. V. Brazhkin, JETP Lett. 96, 789 (2013).

    Article  ADS  Google Scholar 

  69. E. L. Gromnitskaya, I. V. Danilov, A. G. Lyapin, and V. V. Brazhkin, Phys. Rev. B 92, 134104 (2015).

  70. T. Scopigno, G. Ruocco, and F. Sette, Rev. Mod. Phys. 77, 881 (2005).

    Article  ADS  Google Scholar 

  71. S. C. Santucci, D. Fioretto, L. Comez, A. Gessini, and C. Masciovecchio, Phys. Rev. Lett. 97, 225701 (2006).

  72. F. Gorelli, M. Santoro, T. Scopigno, M. Krisch, and G. Ruocco, Phys. Rev. Lett. 97, 245702 (2006).

  73. G. Ruocco and F. Sette, Condens. Matter Phys. 11, 29 (2008).

    Article  ADS  Google Scholar 

  74. D. Ishikawa, M. Inui, K. Matsuda, K. Tamura, S. Tsutsui, and A. Q. R. Baron, Phys. Rev. Lett. 93, 097801 (2004).

  75. Y. Kajihara, M. Inui, K. Matsuda, D. Ishikawa, S. Tsutsui, and A. Q. R. Baron, Phys. Rev. Res. 5, 013120 (2023).

  76. A. Cunsolo, G. Ruocco, F. Sette, C. Masciovecchio, A. Mermet, G. Monaco, M. Sampoli, and R. Verbeni, Phys. Rev. Lett. 82, 775 (1999).

    Article  ADS  Google Scholar 

  77. A. Cunsolo, G. Pratesi, R. Verbeni, D. Colognesi, C. Masciovecchio, G. Monaco, G. Ruocco, and F. Sette, J. Chem. Phys. 114, 2259 (2001).

    Article  ADS  Google Scholar 

  78. F. Bencivenga, A. Cunsolo, M. Krisch, G. Monaco, G. Ruocco, and F. Sette, Europhys. Lett. 75, 70 (2006).

    Article  ADS  Google Scholar 

  79. G. G. Simeoni, T. Bryk, F. A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, and T. Scopigno, Nat. Phys. 6, 503 (2010).

    Article  Google Scholar 

  80. M. Inui, Y. Kajihara, S. Hosokawa, A. Chiba, Y. Nakajima, K. Matsuda, J. R. Stellhorn, T. Hagiya, D. Ishikawa, H. Uchiyama, S. Tsutsui, and A. Q. R. Baron, J. Phys.: Condens. Matter 33, 475101 (2021).

  81. S. Hosokawa, Z. Phys. Chem. 235, 99 (2020).

    Article  Google Scholar 

  82. R. M. Khusnutdinoff, C. Cockrell, O. A. Dicks, A. C. S. Jensen, M. D. Le, L. Wang, M. T. Dove, A. V. Mokshin, V. V. Brazhkin, and K. Trachenko, Phys. Rev. B 101, 214312 (2020).

  83. T. Bryk, F. Gorelli, G. Ruocco, M. Santoro, and T. Scopigno, Phys. Rev. E 90, 042301 (2014).

  84. V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, and K. Trachenko, Phys. Rev. Lett. 111, 145901 (2013).

  85. V. V. Brazhkin, Y. D. Fomin, V. N. Ryzhov, E. N. Tsiok, and K. Trachenko, Phys. A (Amsterdam, Neth.) 509, 690 (2018).

  86. Y. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, and K. Trachenko, J. Phys.: Condens. Matter 28, 43LT01 (2016).

  87. K. Trachenko and V. V. Brazhkin, Rep. Prog. Phys. 79, 016502 (2016).

  88. V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and K. Trachenko, Phys. Rev. E 85, 031203 (2012).

  89. V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and K. Trachenko, JETP Lett. 95, 164 (2012).

    Article  ADS  Google Scholar 

  90. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Y. D. Fomin, and E. N. Tsiok, Phys. Usp. 55, 1061 (2012).

    Article  ADS  Google Scholar 

  91. C. Cockrell, V. V. Brazhkin, and K. Trachenko, Phys. Rep. 941, 1 (2021).

    Article  ADS  Google Scholar 

  92. Y. D. Fomin, V. N. Ryzhov, E. N. Tsiok, and V. V. Brazhkin, Sci. Rep. 5, 14234 (2015).

    Article  ADS  Google Scholar 

  93. V. V. Brazhkin, O. B. Tsiok, and Y. Katayama, JETP Lett. 89, 244 (2009).

    Article  ADS  Google Scholar 

  94. K. Suito, M. Miyoshi, T. Sasakura, and H. Fujisava, in High-Pressure Research: Application to Earth and Planetary Sciences, Ed. by Y. Syono and M. H. Manghnani (Terra Scientific, Tokyo; Am. Geophys. Union, Washington, DC, 1992), p. 219.

  95. G. H. Wolf, S. Wang, C. A. Herbst, D. J. Durben, W. F. Oliver, Z. C. Kang, and K. Halvorson, in High-Pressure Research: Application to Earth and Planetary Sciences, Ed. by Y. Syono and M. H. Manghnani (Terra Scientific, Tokyo; Am. Geophys. Union, Washington, DC, 1992), p. 50.

  96. J. D. Nicholas, R. E. Youngman, S. V. Sinogeikin, J. D. Bass, and J. Kieffer, Phys. Chem. Glasses 44, 249 (2003).

    Google Scholar 

  97. O. L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science (Oxford Univ. Press, Oxford, UK, 1995).

    Google Scholar 

  98. S. M. Antao, C. J. Benmore, B. Li, L. Wang, E. Bychkov, and J. B. Parise, Phys. Rev. Lett. 100, 115501 (2008).

  99. NIST DataBase. https://webbook.nist.gov/chemistry/fluid/.

  100. R. Feistel and W. Wagner, J. Phys. Chem. Ref. Data 35, 1021 (2006).

    Article  ADS  Google Scholar 

  101. F. Kakinuma and S. Ohno, J. Phys. Soc. Jpn. 56, 619 (1987).

    Article  ADS  Google Scholar 

  102. V. N. Korobenko and A. D. Rakhel, Phys. Rev. B 85, 014208 (2012).

  103. V. V. Brazhkin, JETP Lett. 112, 745 (2020).

    Article  ADS  Google Scholar 

  104. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, 1971).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.N. Ryzhov and K. Trachenko for valuable discussions of the results.

Funding

This work was supported by the Russian Science Foundation, project no. 19-12-00111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Brazhkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazhkin, V.V., Danilov, I.V. & Tsiok, O.B. Mysteries of Water and Other Anomalous Liquids: “Slow” Sound and Relaxing Compressibility and Heat Capacity (Brief Review). Jetp Lett. 117, 834–848 (2023). https://doi.org/10.1134/S0021364023601318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023601318

Navigation