Skip to main content
Log in

Correlation Between Magnetic and Electric Properties in the Series of CoxZn1 – xFe2O4 Nanoparticles

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Magnetization dependences of CoxZn1 – xFe2O4 nanoparticles (\(x = 0\), 0.1, 0.2, 0.3, 0.4, 0.5) synthesized with the citrate precursor technique on an external magnetic field and temperature are presented. Ferrimagnetic order in nanoparticles with \(x \geqslant 0.2\) appeared at temperatures, T, exceeding room temperature, and in nanoparticles with \(x = 0\) and 0.1 at T near 100 K. The saturation magnetization, \({{M}_{s}}\), remnant magnetization, \({{M}_{r}}\), and the coercive force, \({{H}_{c}}\), increase with x increase and the temperature decrease. \({{M}_{s}}\) reached very high value: \({{M}_{s}}\) of NPs with \(x = 0.5\) equals to 106.6 emu/g at 100 K while, according to the literature data, \({{M}_{s}}\) of stoichiometric bulk Co ferrite equals to 90 emu/g at 4.2 K. Correlations between concentration dependences of magnetic and electric properties has been revealed and explained qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. A. Mousa, A. M Summan, M. A. Ahmed, and A. M. Badawy, J. Mater. Sci. 24, 2478 (1989).

    Article  Google Scholar 

  2. T. Slatineanu, A. R. Iordan, V. Oancea, M. N. Palamaru, I. Dumitru, C. P. Constantin, and O. F. Caltun, J. Mater. Sci. Eng. B 178, 1040 (2013).

    Article  Google Scholar 

  3. A. S. Kamzin, I. M. Obaidat, V. G. Semenov, V. Narayanaswamy, I. A. Al-Omari, B. Issa, and I. V. Buryanenko, Phys. Solid State 6, 714 (2022).

    Article  Google Scholar 

  4. A. S. Kamzin, I. M. Obaidat, V. G. Semenov, V. Narayanaswamy, I. A. Al-Omari, B. Issa, and I. V. Buryanenko, Phys. Solid State 65, 482 (2022).

    Google Scholar 

  5. Yu. S. Gaiduk, E. V. Korobko, K. A. Shevtsova, D. A. Kotikov, I. A. Svito, A. E. Usenko, D. V. Ivashenko, A. Fahmy, and V. V. Pankov, Phys. Solid State 22, 28 (2022).

    Google Scholar 

  6. J. Smit and H. P. Wijn, Ferrites. Physical Properties of Ferrimagnetic Oxides in Relation to their Technical Applications (Philips’ Techn. Libr., Eindhoven, 1959).

  7. R. Sagayaraj, S. Aravazhi, and G. Chandrasekaran, Int. Nano Lett. 11, 307 (2021).

    Article  Google Scholar 

  8. C. Yao, Q. Zeng, G. F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, and J. Z. Jiang, J. Phys. Chem. C 111, 12274 (2007).

    Article  Google Scholar 

  9. R. Ramadan, M. K. Ahmed, and V. Uskokovic, J. Alloys Compd. 856, 157013 (2021).

  10. F. Gozuak, Y. Koseoglu, A. Baykal, and H. Kavasa, J. Magn. Magn. Mater. 321, 2170 (2009).

    Article  Google Scholar 

  11. S. G. C. Fonseca, L. S. Neiva, M. A. R. Bonifácio, P. R. C. dos Santos, U. C. Silva, and J. B. L. de Oliveira, Mater. Res. 21, 20170861 (2018).

  12. P. A. Asogekar, S. K. Gaonkar, A. Kumar, and V. M. S. Verenkar, Mater. Res. Bull. 141, 111330 (2021).

  13. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, and M. Pacia, Nanoscale Res. Lett. 12, 141 (2017).

    Article  Google Scholar 

  14. D. Chahar, S. Taneja, P. Thakur, and A. Thakur, J. Alloys Compd. 843, 155681 (2020).

  15. G. Fan, J. Tong, and F. Li, Ind. Eng. Chem. Res. 51, 13639 (2012).

    Article  Google Scholar 

  16. W. S. Mohamed, M. Alzaid, M. S. M. Abdelbaky, Z. Amghouz, S. García-Granda, and A. M. Abu-Dief, Nanomaterials 9, 1602 (2019).

    Article  Google Scholar 

  17. I. P. Duru, Phys. B (Amsterdam, Neth.) 627, 413548 (2022).

  18. J. M. Ziman, Models of Disorder (Cambridge Univ. Press, New York, 1979).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful the Collective Use Center at the Krasnoyarsk Scientific Center, Siberian Division, Russian Academy of Sciences for assistance in conducting magnetic measurements.

Funding

Thakur and P. Thakur acknowledge the support of the Department of Science and Technology, Funding for Improvement of Science and Technology, Government of India (DST-FIST, grant no. SR/FST/PS-I/2018/48). Authors also wish to acknowledge Gurujal, an initiative with district administration Gurugram for financial assistance vide project no. 176 Gurujal dated September 10, 2019, Amity Incubation grant from the Ministry of Electronics and Information Technology: (Meity) under Technology Incubation and Development of Entrepreneurs (TIDE 2.0) program and the startup Nanolattice X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Petrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, D., Edelman, I., Thakur, A. et al. Correlation Between Magnetic and Electric Properties in the Series of CoxZn1 – xFe2O4 Nanoparticles. Jetp Lett. 117, 765–768 (2023). https://doi.org/10.1134/S0021364023600969

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023600969

Navigation