Skip to main content
Log in

Nonuniformly Filled Vortex Rings in Nonlinear Optics

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

A new type of long-lived solitary structures for paraxial optics with two circular polarizations of light in a homogeneous defocusing Kerr medium with an anomalous group velocity dispersion has been revealed numerically in the coupled nonlinear Schrödinger equations. A found hybrid three-dimensional soliton is a vortex ring against the background of a plane wave in one of the components, and the core of the vortex is filled with another component nonuniformly in azimuth angle. The existence of such quasistationary structures with a reduced symmetry in a certain parametric region is due to the saturation of the so-called sausage instability caused by the effective surface tension of a domain wall between two polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 1st ed. (Academic, CA, 2003).

    Google Scholar 

  2. V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer, Berlin, 1999).

    Book  Google Scholar 

  3. B. A. Malomed, Multidimensional Solitons (AIP, Melville, 2022).https://doi.org/10.1063/9780735425118

    Book  MATH  Google Scholar 

  4. F. Baronio, S. Wabnitz, and Yu. Kodama, Phys. Rev. Lett. 116, 173901 (2016).

  5. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings (SIAM, Philadelphia, 2015).

    Book  MATH  Google Scholar 

  6. A. L. Berkhoer and V. E. Zakharov, Sov. Phys. JETP 31, 486 (1970).

    ADS  Google Scholar 

  7. T.-L. Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).

    Article  ADS  Google Scholar 

  8. H. Pu and N. P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).

    Article  ADS  Google Scholar 

  9. B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).

    Article  ADS  Google Scholar 

  10. S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).

  11. G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).

  12. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).

    Article  ADS  Google Scholar 

  13. P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).

    Article  ADS  Google Scholar 

  14. M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 3389 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 4512 (1994).

    Article  ADS  Google Scholar 

  16. A. P. Sheppard and M. Haelterman, Opt. Lett. 19, 859 (1994).

    Article  ADS  Google Scholar 

  17. Yu. S. Kivhsar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).

    Article  ADS  Google Scholar 

  18. N. Dror, B. A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602 (2011).

  19. A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).

    Article  ADS  Google Scholar 

  20. A. S. Desyatnikov, L. Torner, and Yu. S. Kivshar, Prog. Opt. 47, 291 (2005).

    Article  ADS  Google Scholar 

  21. V. P. Ruban, JETP Lett. 117, 292 (2023).

    Article  ADS  Google Scholar 

  22. B. van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).

  23. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).

  24. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).

  25. N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).

  26. H. Kokubo, K. Kasamatsu, and H. Takeuchi, Phys. Rev. A 104, 023312 (2021).

  27. K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).

  28. S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).

  29. T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).

  30. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).

  31. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).

  32. D. K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P. G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A 102, 033320 (2020).

  33. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).

  34. K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).

  35. P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).

  36. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 93, 250406 (2004).

  37. H. Takeuchi, K. Kasamatsu, M. Tsubota, and M. Nitta, Phys. Rev. Lett. 109, 245301 (2012).

  38. M. Nitta, K. Kasamatsu, M. Tsubota, and H. Takeuchi, Phys. Rev. A 85, 053639 (2012).

  39. K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).

  40. V. P. Ruban, JETP Lett. 113, 814 (2021).

    Article  Google Scholar 

  41. V. P. Ruban, J. Exp. Theor. Phys. 133, 779 (2021).

    Article  ADS  Google Scholar 

  42. K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010); Phys. Rev. Lett. 106, 199903(E) (2011).

  43. M. Pola, J. Stockhofe, P. Schmelcher, and P. G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).

  44. S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).

  45. A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A 101, 013630 (2020).

  46. A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021).

  47. V. P. Ruban, JETP Lett. 113, 532 (2021).

    Article  ADS  Google Scholar 

  48. V. P. Ruban, JETP Lett. 115, 415 (2022).

    Article  ADS  Google Scholar 

  49. V. P. Ruban, W. Wang, C. Ticknor, and P. G. Kevrekidis, Phys. Rev. A 105, 013319 (2022).

  50. G. C. Katsimiga, P. G. Kevrekidis, B. Prinari, G. Biondini, and P. Schmelcher, Phys. Rev. A 97, 043623 (2018).

  51. X. Liu, B. Zhou, H. Guo, and M. Bache, Opt. Lett. 40, 3798 (2015).

    Article  ADS  Google Scholar 

  52. X. Liu and M. Bache, Opt. Lett. 40, 4257 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 0029-2021-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruban, V.P. Nonuniformly Filled Vortex Rings in Nonlinear Optics. Jetp Lett. 117, 583–587 (2023). https://doi.org/10.1134/S0021364023600817

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023600817

Navigation